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Abstract. In this work, we defined a quaternionic B2-slant helix in semi-Euclidean space E4
2. Then

we gave Frenet formulae for the quaternionic curve in semi-Euclidean space E4
2. Also, we investigated

some necessary and sufficient conditions for a space curve to be a quaternionic B2-slant helix according
to quaternionic curves in semi-Euclidean space E4

2.
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1. Introduction

The quaternion was first time introduced by Hamilton in 1843 as a successor to complex
numbers. In [3], provided a brief introduction of the semi-quaternions. As a set, the quaternions
Q are coincide with R4-dimensional vector space R4 over real numbers. According to this feature
of quaternions Baharathi and Nagaraj presented the Frenet formulae for a quaternion valued
function of a single real variable (quaternionic curves) in E3 and E4 [2]. Also, A.C. Çöken
and A. Tuna have studied Frenet formulae, harmonic curvatures, inclined curves and some
characterizations for a quaternionic curve in the semi-Euclidean space E4

2 [1]. Specially, in
the differential geometry there are some curves satisfying some relationships between their
curvatures. One of these curves is a general helix which is defined by the property that the
tangent of the curve makes a constant angle with a fixed straight line called the axis of the
general helix [5].
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In this paper, our main aim is to define quaternionic B2-slant helix and to obtain some of
their necessary and sufficient conditions.

2. Preliminaries

A semi-real quaternion q is an expression form q = a~e1 + b~e2 + c~e3 +d~e4 where a, b, c and d
are ordinary real numbers and ~e i , (1≤ i ≤ 4), e4 =+1 are quaternionic units which satisfy the
non-commutative multiplication rules

(1) ~e i ×~e i = ε~e i ; 1= i ≤ 3.

(2) ~e i ×~e j = ε~e iε~e j~ek, where (i j k) is an even permutation of (1 2 3) in semi-Euclidean space.

Let us denote the algebra of semi-real quaternions by Qv and its natural basis is given by
{e1, e2, e3, e4}. We can write a semi-real quaternion q as a form q = Sq +Vq where Sq = d
is scalar part and Vq = a~e1 + b~e2 + c~e3 is vector part of q. So the conjugate of q is defined
by γq = −a~e1 − b~e2 − c~e3 + d. Using these basic products we can define the symmetric, non-
degenerate, real-valued, bilinear form h as below:

(p, q)→ h(p, q)= 1
2

[−εpεγq(p×γq)−εqεγp(q×γp)]

which is called the semi-real quaternion inner product [1]. The norm of semi-real quaternion q
is ‖q‖2 = |h(q, q)| = |εq(q×γq)| = |−a2−b2+ c2+d2|. If ‖q‖ = 1, then semi-real quaternion q is
called semi-real unit quaternion [4]. Let q and p be two semi-real quaternion in Qv, then the
quaternion product of q and p is given by

p× q = SpSq +〈Vp,Vq〉+SpVq +SqVp +VpVq.

And then if q+γq = 0, then q is called a semi-real spatial quaternion [2]. The four-dimensional
semi-Euclidean space E4

2 is identified with the space of semi-real unit quaternions. Let I = [0,1]
be an interval in real line R and

α : I ⊂R→Qv, s →α(s)=
4∑

i=1
αi(s)~e i, (1≤ i ≤ 4), e4 = 1,

be a smooth curve in E4
2 with nonzero curvatures {κ,τ,σ−εtεTεNκ} and {T(s), N(s),B1(s),B2(s)}

denotes the Frenet apparatus of the semi-real quaternionic curve α(s). Let the arc-length
parameter s be chosen such that the tangent T(s) = α′(s) has unit magnitude [1]. Then the
Frenet equations of the semi-real quaternionic curve α(s) are given by

d
ds

T(s)= εNκ(s)N(s) ,

d
ds

N(s)=−εtεNκ(s)T(s)+εnτ(s)B1(s) ,

d
ds

B1(s)=−εtτ(s)N(s)+εn[σ−εtεTεN](s)B2(s) ,

d
ds

B2(s)=−εb[σ−εtεTεNκ](s)B1(s) , (1)
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where κ(s)= εN‖ d
ds T(s)‖, ‖N(s)‖2 = |εN |, h(T,T)= εT , h(N, N)= εN , h(B1,B1)= εB1 , h(B2,B2)=

εB2 [1].

3. Quaternionic B2-Slant Helix in Semi-Euclidean 4-Space

In this section, we give the definition and the necessary and sufficient conditions for quaternionic
B2-slant helices in semi-Euclidean space E4

2.

Definition 1. A unit semi-real quaternionic curve α : I ⊂R→Qv is called B2-slant helix if its
second binormal unit vector B2 makes a constant angle ϕ with a fixed direction in a unit vector
U ; that is h(B2,U)= cosϕ is constant along the curve.

Theorem 1. A unit semi-real quaternionic curve α in semi-Euclidean space E4
2 with κ 6= 0, τ 6= 0

and σ−εtεTεNκ 6= 0 is a quaternionic B2-slant helix if and only if the condition(σ−εtεTεNκ

τ

)2 +
(
εN

1
κ

)2 (
d
ds

(σ−εtεTεNκ

τ

))2
= constant (2)

is satisfied.

Proof. Let α be a quaternionic B2-slant helix with h(B2,U)= cosϕ, then differentiating the last
equation and by using the Frenet equations given in (1), we get

d
ds

h(B2,U)=−εb[σ−εtεTεN k]h(B1,U)= 0

that’s why U is in the subspace Sp{T, N,B2} and can be written as below

U = a1(s)T(s)+a2(s)N(s)+a3(s)B2(s), (3)

where

a1(s)= h(T,U), a2(s)= h(N,U), a3(s)= h(B2,U)= cosϕ= constant. (4)

Taking derivative of (3) with respect to s and by using the Frenet equations given in (1), we
obtain (

da1

ds
−a2εtεNκ

)
T +

(
da2

ds
+a1εNκ

)
N + (a2εnτ−a3εb[σ−εtεTεNκ])B1 = 0.

From this equation we have

da1

ds
−a2εtεNκ= 0,

da2

ds
+a1εNκ= 0, a2εnτ−a3εb[σ−εtεTεNκ]= 0,

that is,

a2 = εnεb
σ−εtεTεNκ

τ
a3 = εtεN

1
κ

da1

ds
, (5)

da2

ds
=−εNκa1. (6)
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Differentiating (5) with respect to s and by using (6), we get the second order linear differential
equation for a1 as below

d2a1

ds2 − κ′

κ

da1

ds
+εtεNκ

2a1 = 0. (7)

By changing the variables in (7) as t = ∫ s
0 εtεNκ(s)ds we obtain

d2a1

dt2 +a1 = 0.

The general solution of the above differential equation is

a1 = A cos t+Bsin t, (8)

where A and B are constants. With the help of (5), (6) and (8) we have

a2 = εnεb
σ−εtεTεNκ

τ
a3 =−A sin t+Bcos t, (9)

a1 =−εnεbεN
1
κ

[
d
ds

(σ−εtεTεNκ

τ

)]
a3 = A cos t+Bsin t. (10)

From (9) and (10) it follows that the constants A and B are

A =−εnεba3

(
σ−εtεTεNκ

t
sin t+εN

1
κ

[
d
ds

(σ−εtεTεNκ

τ

)]
cos t

)
, (11)

B = εnεba3

(
σ−εtεTεNκ

τ
cos t−εN

1
κ

[
d
ds

(σ−εtεTεNκ

τ

)]
sin t

)
. (12)

Using the equations (4), (11) and (12) we get

A2 +B2 = εnεb

[(σ−εtεTεNκ

τ

)2 +
(
εN

1
κ

)2 [
d
ds

(σ−εtεTεNκ

τ

)]2]
cos2ϕ= sin2ϕ .

Thus, we have(σ−εtεTεNκ

τ

)2 +
(
εN

1
κ

)2 [
d
ds

(σ−εtεTεNκ

τ

)]2
= εnεb tan2ϕ= constant. (13)

Conversely, for a unit semi-real quaternionic curve the condition (2) is satisfied we can
always find a constant unit vector U which makes a constant angel with the second binormal
vector of the semi-real quaternionic curve. By considering the unit vector U and using the
equations (4), (9) and (10) we get

U =
[
−εnεbεN

1
κ

(
d
ds

(σ−εtεTεNκ

τ

))
T +εnεb

σ−εtεTεNκ

τ
N +B2

]
cosϕ.

Taking derivative of the above equation with the help of (13), gives that du
ds = 0, this means that

the unit vector U is constant vector. Consequently, the unit semi-real quaternionic curve α is a
quaternionic B2-slant helix in semi-Euclidean space.
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Theorem 2. A unit semi-real quaternionic curve α in the semi-Euclidean space E4
2 is a

quaternionic B2-slant helix if and only if there exists a C2-function f such that

εNκ f (s)= d
ds

(σ−εtεTεNκ

τ

)
,

d
ds

f (s)=−εNκ
σ−εtεTεNκ

τ
. (14)

Proof. We assume that α is a quaternionic B2-slant helix. Differentiation of (13) with respect
to s gives

σ−εtεTεNκ

τ

d
ds

(σ−εtεTεNκ

τ

)
+εN

1
κ

d
ds

(σ−εtεTεNκ

τ

) d
ds

[
1
κ

d
ds

(σ−εtεTεNκ

τ

)]
= 0.

(15)

Therefore, we have

εN
1
κ

d
ds

(σ−εtεTεNκ

τ

)
=−

(σ−εtεTεNκ

τ

) d
ds

(σ−εtεTεNκ

τ

)
d
ds

[
1
κ

d
ds

(σ−εtεTεNκ

τ

)] .

If we take

f (s)=−

(σ−εtεTεNκ

τ

) d
ds

(σ−εtεTεNκ

τ

)
d
ds

[
1
κ

d
ds

(σ−εtεNκ

τ

)] ,

then the above equation becomes

εNκ f (s)= d
ds

(σ−εtεTεNκ

τ

)
. (16)

Therefore, (15) is rewritten as

d
ds

[
1
κ

d
ds

(σ−εtεTεNκ

τ

)]
=−εNκ

σ−εtεTεNκ

τ
. (17)

By differentiating (16) with respect to s, we get

d
ds

f (s)= εN
d
ds

[
1
κ

d
ds

(σ−εtεTεNκ

τ

)]
. (18)

From (17) and (18), we obtain

d
ds

f (s)=−εNκ
σ−εtεTεNκ

τ
. (19)

Conversely, if the condition (14) holds, then from the equations (4), (9), (10) and (16) we can
write the unit constant vector U as

U =
[
−εnεb f (s)T +εnεb

σ−εtεTεNκ

τ
N +B2

]
cosϕ.

From this equation the second binormal vector B2 of α makes a constant angle ϕ with a fixed
direction U ; that is h(B2,U)= cosϕ= constant. Thus, α is a quaternionic B2-slant helix.
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Theorem 3. Let α be a unit semi-real quaternionic curve in the semi-Euclidean space E4
2. Then

is α a quaternionic B2-slant helix if and only if the following condition is satisfied;

σ−εtεTεNκ

τ
= C1 cosω+C2 sinω, (20)

where C1 and C2 are constants.

Proof. Let α be a unit semi-real quaternionic B2-slant helix. Then the condition (14) is holds.
By using this condition let us define C2-function ω(s) by

ω(s)=
∫ s

0
εNκ(s)ds, (21)

and C1-functions g(s) and r(s) by

g(s)= σ−εtεTεNκ

τ
cosω− f (s)sinω,

r(s)= σ−εtεTεNκ

τ
sinω+ f (s)cosω. (22)

By differentiating equations (22) with respect to s and using equations (16), (19) and (21) we
get that d

ds g(s)= 0 and d
ds r(s)= 0 are both identically zero. Therefore, g(s)= C1 and r(s)= C2,

where C1 and C2 are constants. By replacing these in (22) and solving the result that getting
from (22) for σ−εtεTεNκ

τ
we have

σ−εtεTεNκ

τ
= C1 cosω+C2 sinω.

Conversely, suppose that condition (20) holds. Then by solving the equations in (22) we have

f (s)=−C1 sinω+C2 cosω,

this function satisfies the condition (14). Therefore, α is a quaternionic B2-slant helix.

4. Conclusion

For a space curve to be a quatermionic B2-slant helix, we obtain necessary and sufficient
conditions according to quaternionic curves in semi-Euclidena space E4

2.
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