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1. Introduction
Many important problems in mathematics, sciences, engineering and other can be reformulation
which require finding zero points or null point of nonlinear operators i.e. equation of the form
0 ∈ Ax, where x ∈ X such that X be a vector space, and A is a maximal monotone operator.
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The inverse problem can be split into two inverse problems, which is called Split Inverse
Problem(SIP). Let IP1, IP2 be two inverse problems. First one is formulated in the space X
and the second one is formulated in space Y . This problem concern in a model which there are
given two vector spaces X , Y , and a linear operator T : X → Y . The Split Inverse Problem is
formulated as follows.

Find a point x∗ ∈ X that solves IP1

and y∗ = Tx∗ ∈Y that solves IP2. (1.1)

The Split Convex Feasibility Problem is the first case of the SIP, which is introduced by
Censor and Elfving [1]. The two inverse problems IP1 and IP2 there are of the Convex Feasibility
Problem (CFP) type. However, someone called the Split Convex Feasibility Problem is the Split
Feasibility Problem (SFP). The Split (Convex) Feasibility Problem is formulated as follows.

Find a point x∗ ∈ C such that Tx∗ ∈Q, (1.2)

where C, Q are nonempty closed convex subspace of Hilbert space H1, H2, respectively. The set
solution of Split Feasibility Problem is denoted by Γ := {x∗ ∈ C such that Tx∗ ∈Q}= C∩T−1(0).

Assume that the SFP has a solution, then x ∈ C solves (1.1) if and only if it solves the
following fixed point equation:

x = PC(I −γT∗(I −PQ)T)x, x ∈ C, (1.3)

where γ is any positive constant, PC is metric projections of H1 onto C, and PQ is metric
projections of H2 onto Q, and T∗ is the adjoint of T .

Later, many researcher have studies SIP in Hilbert spaces, for instance, [2, 3, 4] Takahash
have studies SIP in Banach spaces [5].

Byrne el al. [4] introduced the Split Common Null Point Problem (SCNPP) for set-
valued maximal monotone operators in Hilbert spaces. They given two set-valued operators
A : H1 → 2H1 , B : H2 → 2H2 and let T : H1 → H2 be a bounded linear operator. They consider
SCNPP as the following.

Find a point x∗ ∈ H1 that solves 0 ∈ Ax∗

and y∗ = Tx∗ ∈ H2 that solves 0 ∈ By∗ (1.4)

where A−1(0) and B−1(0) are null point set of A and B, respectively. They given x0 ∈ H1, define
iterative scheme by the following:

xn+1 = JB1
λ

(xn +γA∗(JB2
λ

− I)Axn), (1.5)

where A∗ is the adjoint of A,L = ‖A∗A‖ and γ ∈ (0, 2
L ), and λ> 0.

In 2015, Takahashi [6] have studied SCNPP and he is the first that extended SCNPP form
Hilbert space to Banach space by using metric resolvent and metric projections with applies
the hybrid method. Recently, Takahashi and Yao [7] considered SCNPP in Hilbert spaces and
Banach spaces by using the hybrid method as the following theorem:

Theorem 1.1 ([7]). Let H be a Hilbert space and let E be a uniformly convex and uniformly
smooth of Banach spaces. Let JE be the duality mapping on E. Let A : H → 2H and B : E → 2E∗

be
maximal monotone operator such that A−1(0) 6= ; and B−1(0) 6= ;. Let JA

λ
be the resolvent of A for

λ> 0 and let QB
µ be the metric resolvent of B for µ> 0. Let T : H → E be a bounded linear operator
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such that T 6= ; and T∗ be an adjoint operator of T . Suppose that A−1(0)∩T−1(B−10) 6= ;. Let
x1 ∈ H, and let {xn} be a sequence generated by the following.

zn = JA
λn

(xn −λnT∗JE(Txn −QB
µn

Txn)),

yn =αnxn + (1−αn)zn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ H : 〈xn − z, xn1− xn〉 ≥ 0},

xn+1 = PCn∩Qn x1; ∀ n ∈N,

(1.6)

where αn ⊂ [0,1], and λn,µn ⊂ (0,∞) satisfies that 0 ≤ αn ≤ a < 1, 0 < b ≤ µn, and 0 < c ≤
λn‖T‖2 ≤ d < 2 for some a,b, c,d ∈ R. Then the sequence {xn} converges strongly to a point
z0 ∈ A−1(0)∩T−1(B−10), where z0 = PA−1(0)∩T−1(B−10)x1.

A viscosity approximation method is a well-known iterative method for solving a fixed point
of nonexpansive mappings. Moudafi [8] is first person that proposed viscosity approximation
method by combing the nonexpansive mapping and a contraction mapping. He proposed the
following iterative scheme in Hilbert spaces:

xn+1 =αn f (xn)+ (1−αn)Sxn, (1.7)

where f is a contraction mapping and {αn}⊆ (0,1) satisfies some conditions, he proved that {xn}
converges strongly to a fixed point of S.

Further, Xu [9] developed the viscosity approximation method for solves the zero points of
monotone operators in a Banach space. He proved that strong convergent theorem.

Motivated by the problems of split common null point, and result of Takahashi [7], these is
interesting that the result of [7] is formulated in two different spaces. Moreover, a well-known
viscosity approximation method of Moudafi [8] and Xu [9] are still effective and interesting
for solving a fixed point problem. Then we consider SCNPP related between a Hilbert space
and a Banach space by using the viscosity approximation method. We consider SCNPP as the
following.

Find a point x∗ ∈ H that solves 0 ∈ Ax∗

and y∗ = Tx∗ ∈ E that solves 0 ∈ By∗, (1.8)

where A−1(0) and B−1(0) are null point set of A and B, respectively. While, we let H, E are
Hilbert spaces and Banach spaces, respectively.

2. Preliminaries
Let E be a real Banach space with the norm ‖ · ‖E and the dual space E∗ of E is the space of
continuous linear functional on E .

The normalized duality mapping J : E → 2E∗
is defined by

J(x)= {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2,‖x‖ = ‖x∗‖}, ∀ x ∈ E.

In the case if E is Hilbert space, then the normalized duality mapping is linear and it is just
the identity mapping, i.e. J = I.
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A Banach space E is said to satisfy Opial’s condition if for each sequence {xn}∞n=0 in E such
that {xn} converges weakly to some x in E, the inequality

liminf
n→∞ ‖xn − x‖ < liminf

n→∞ ‖xn − y‖
holds for all y ∈ E with y 6= x. In fact, a Banach space with a weakly sequentially continuous
duality mapping has the Opial’s condition; see [10]. It known that every Hilbert satisfies the
Opial’s condition.

A Banach space E is called a strictly convex if it satisfies the following condition

‖x‖ = ‖y‖ = ‖(1−λ)x+λy‖ ∀ x, y ∈ E and 0<λ< 1 =⇒ x = y.

Let S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. E is said to be uniformly convex if for
each ε ∈ (0,2] there exists a constant δ= δ(ε)> 0 such that for all x, y ∈ S(E), if ‖x− y‖ ≥ ε then∥∥∥ x+y

2

∥∥∥≤ 1−δ. It is well known that uniformly convex is strictly convex.
A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.1)

exists for all x, y ∈ S(E).
The norm of E is said to be uniformly Gâteaux differentiable norm if for each y ∈ S(E), the

limit (2.1) is attained uniformly for all x ∈ S(E) and it is said to be Fréchet differentiable if for
each x ∈ S(E), the limit (2.1) is attained uniformly for all y ∈ S(E). Moreover, it is said to be
uniformly smooth if the limit (2.1) is attained uniformly for all (x, y) ∈ S(E)×S(E).

The modulus of smoothness of E is the function ρ : [0,∞) → [0,∞) defined by ρ(t) =
sup

{
1
2 (‖x+ y‖+‖x− y‖)−1 : x, y ∈ E,‖x‖ = 1,‖y‖ = t

}
. A Banach space E is an uniformly smooth

if and only if lim
t→0

ρ(t)
t = 0.

A Banach space E is said to be q-uniformly smooth if for 1 < q ≤ 2 be a fixed real number.
There exists a constant c > 0 such that ρ(t)≤ ctq for all t > 0. In the case q = 2, E is said to be
2-uniformly smooth if there exists a constant c > 0 such that ρ(t)≤ ct2 for all t > 0.

The examples of 2-uniformly smooth and uniformly convex Banach space that

Lp, lp, or the sobolev space W p
m is

2-uniformly smooth, if p ≥ 2;

q-uniformly smooth, if 1< p ≤ 2.

Note that no a Banach space is q-uniformly smooth for q > 2. It is known that a Hilbert
space is 2-uniformly convex and 2-uniformly smooth. By [11, 12] we know that if E be a
q-uniformly smooth Banach space, then for all x, y ∈ E there exists a constant c1 > 0 such
that ‖J(x)− J(y)‖ ≤ c1‖x− y‖q−1. Hence if E be a 2-uniformly smooth Banach space, then
there exists a constant c1 > 0 such that ‖J(x)− J(y)‖ ≤ c1‖x− y‖ for all x, y ∈ E. If E be
a q-uniformly smooth Banach space for 1 < q < 2, then there exists the constant c1 > 0
such that ‖J(x)− J(y)‖ ≤ c1‖x− y‖q−1. Then we can see that ‖J(x)− J(y)‖ ≤ c1‖x− y‖ too.
For instance in Lp is 2-uniformly smooth Banach space for 2 ≤ p < ∞ and we know that
‖J(x)− J(y)‖ ≤ (p−1)‖x− y‖. For 1 ≤ q ≤ 2, then Lq is q-uniformly smooth Banach space. So
that ‖J(x)− J(y)‖ ≤ 2q−1Kq‖x− y‖q−1 and also we have ‖J(x)− J(y)‖ ≤ 2q−1Kq‖x− y‖, where
Kq is q-uniformly smooth constant.
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Remark 2.1 (See [12]). (1) If E is a uniformly smooth, then E is smooth and reflexive.

(2) If E is a uniformly convex, then E is strictly convex.

(3) If E is a smooth, reflexive and strictly convex then the normalized duality mapping J is
single-valued, one-to-one and onto. Then J−1 : E∗ → E is single-valued, bijective, that is
the inverse mapping J−1 : E∗ → (E) and also JJ−1 = IE∗ , J−1J = IE .

(4) A normed space E is reflexive, if and only if E is bounded sequence has a weakly
convergent subsequence.

Next, we recall some definitions. Let C be a nonempty close convex subset of E. Let
S : C → C be an operator. If there exists a coefficient k ∈ (0,1) such that ‖Sx−Sy‖ ≤ k‖x− y‖
for all x, y ∈ C, then S is called k-contraction. If k = 1 that is ‖Sx−Sy‖ ≤ ‖x− y‖ for all x, y ∈ C,
then we called nonexpansive. In this paper, fixed point of an operator S is denoted by Fix(S), i.e,
Fix(S) := {x ∈ C : Sx = x}.

Let B : E → 2E∗
be a set-value operator, B is said to be monotone if 〈x− y,u∗−v∗〉 ≥ 0, for all

x, y ∈ D(B), u∗ ∈ Bx, v∗ ∈ By, where D(B) is the domain of B. A monotone operator B on E is
said to be maximal if its graph is not properly contained in the graph of any other monotone
operator on E. By [13], we known that if B be a maximal monotone operator of E into 2E∗

,
then R(I + rJ−1B)= E. From [14] if E be a uniformly convex and smooth Banach space, then
B is maximal monotone if and only if R(J+ rB)= E∗ for r > 0, where R(J+ rB) is the range of
J+ rB. This mean that R(I + rJ−1B)= E.

For a maximal monotone operator B, we can define a nonexpansive single-valued mapping
QB

r : R(I + rJ−1B) → D(B) by QB
r = (I + rJ−1B)−1 for each r > 0, which is called the metric

resolvent of B. It is known that 0 ∈ B(x)⇔ x ∈Fix(QB
r ). The set of null point of B is generated

by B−1(0)= {x ∈ B : 0 ∈ Bx}. From Takahashi [15], we known that B−1(0) are closed and convex.
In Hilbert space, we known that H = H∗. For a monotone operator A : H → 2H , we define a

nonexpansive single-valued mapping JA
r : R(I + rA)→ D(A) by JA

r = (I + rA)−1 for each r > 0,
which is called the resolvent of A. It is known that 0 ∈ A(x)⇔ x ∈Fix(JA

r ).
Let C be a nonempty closed convex subset of a Banach space E and D ⊂ C, then a mapping

Q : C → D is said to be sunny if Q(x+ t(x−Q(x))) = Q(x) whenever Qx+ t(x−Q(x)) ∈ C for all
x ∈ C and t ≥ 0.

A mapping Q : C → C is called a retraction if Q2 =Q. Note that if a mapping Q is a retraction,
then Qz = z for all z ∈ R(Q) where R(Q) is the range of Q. A subset D of Q is called a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.

Lemma 2.2 ([16]). Let E be a smooth Banach space and let C be a nonempty subset of E.
Let Q : E → C be a retraction and let J be the normalized duality mapping on E. Then, the
followings are equivalent:

(i) Q is sunny and nonexpansive;

(ii) ‖Qx−Q y‖2 ≤ 〈x− y, J(Qx−Q y)〉, ∀ x, y ∈ E;

(iii) ‖(x− y)− (Qx−Q y)‖2 ≤ ‖x− y‖2 −‖Qx−Q y‖2 ;

(iv) 〈x−Qx, J(y−Qx)〉 ≤ 0, ∀ x ∈ E, y ∈ C.
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Lemma 2.3 ([17]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E and let S be a nonexpansive mapping of C into itself with Fix(S) 6= ;.
Then, the set Fix(S) is a sunny nonexpansive retract of C.

In 2004, Xu [9] studied the continuous scheme xt = t f (xt)+ (1− t)Sxt, where f is a k-
contraction and S is nonexpansive mapping. On a uniformly smooth Banach space, Xu proved
that the sequence xt ∈ C be the unique fixed point of the contraction x → t f (x)+ (1− t)Sx, that is
xt = t f (xt)+ (1− t)Sxt.

Lemma 2.4 ([9]). Let E be a uniformly smooth Banach space, C be a closed convex subset
of E, S : C → C be a nonexpansive mapping with Fix(S) 6= ;, and and f ∈ Ξc. Then xt

defined by xt = t f (xt)+ (1− t)Sxt converges strongly to a point in Fix(S). If we defines mapping
Q :Ξc →Fix(S), where Ξc denote the set of k-contraction, by Q( f ) := lim

t→0
xt, then Q( f ) solves the

following variational inequality:

〈(I − f )Q( f ), J(Q( f )− p)〉 ≤ 0, ∀ f ∈Ξc, ∀ p ∈Fix(S).

Namely, if x̄ =QC( f ), then

〈x̄− f (x̄), J(x̄− p)〉 ≤ 0, ∀ f ∈Ξc, ∀ p ∈Fix(S).

It well known that if E = H is a Hilbert space, then a sunny nonexpansive retraction QC is
coincident with the metric projection PC from E onto C, that is QC = PC .

In the sequel to give our main results, we need the following lemmas.

Lemma 2.5 ([18]). Let E be a real Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 +2〈y, j(x+ y)〉, j(x+ y) ∈ J(x+ y),

where j denote a single-value.

Lemma 2.6 ([12]). Let H be a Hilbert space. Then

‖x+ y‖2 = ‖x‖2 +2〈y, x〉+‖y‖2, ∀ x, y ∈ H.

Lemma 2.7 ([20]). Let E be a real uniformly convex Banach space and Br = {x ∈ E : ‖x‖ ≤ r},
r > 0. Then there exists a continuous, strictly increasing, and convex function g : [0,∞]→ [0,∞],
g(0)= 0 such that

‖αx+βy+γz‖2 ≤α‖x‖2 +β‖y‖2 +γ‖z‖2 −αβg(‖x− y‖), ∀ x, y, z ∈ [0,1],

with α+β+γ= 1.

Lemma 2.8 ([21], The Resolvent Identity). For all r > 0, s > 0. Let x ∈ E and B is maximal
monotone then

JB
r x = JB

s

( s
r

x+
(
1− s

r

)
JB

r x
)
.

Lemma 2.9 ([24], Demiclosed Principle). Let C be a nonempty closed convex subset of a uniformly
convex Banach space E and S be a nonexpansive mapping. Then I −S is demiclosed at zero, i.e.,
xn * x and xn −Sxn → 0 imply x = Sx.
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Lemma 2.10 ([25]). Let {xn} and {zn} be bounded sequences in a Banach space E and let {βn}
be a sequence in [0,1] with

0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1.

Suppose xn+1 = (1−βn)zn+βnxn for all integers n ≥ 0 and limsup
n→∞

(‖zn+1− zn‖−‖xn+1− xn‖)≤ 0.

Then lim
n→∞‖zn − xn‖ = 0.

Lemma 2.11 ([26]). Assume that {an} is a sequence of nonnegative real numbers satisfying the
condition

an+1 ≤ (1− tn)an + tnbn + cn, ∀ n ≥ 0,

where {tn} is a sequence in [0,1] such that
∞∑

n=0
tn =∞, {bn} is a sequence such that limsup

n→∞
bn ≤ 0

and cn ≥ 0, ∀n ≥ 0 such that
∞∑

n→∞
cn <∞. Then, lim

n→∞an = 0.

Lemma 2.12 ([6]). Let E1 and E2 be strictly convex, reflexive and smooth Banach space and let
JE1 and JE2 be the duality mapping on E1 and E, respectively. Let A : E1 → 2E∗

1 and B : E2 → 2E∗
2

be maximal monotone operators such that A−1(0) 6= ; and B−1(0) 6= ;, respectively. Let JA
λ

and
QB
µ be the metric resolvent of be the resolvent of A for λ> 0 and B for µ> 0, respectively. Let

T : E1 → E2 be a bounded linear operator such that T 6= 0 and let T∗ be the adjoint operator of
T . Suppose that Ω := A−1(0)∩T−1(B−1(0)) 6= ;. Let λ, µ, r > 0 and p ∈ E. Then the following
are equivalent:

(i) p = JA
λ

(p− rJ−1
E1

T∗JE2(T p−QB
µT p));

(ii) p ∈ A−1(0)∩T−1(B−1(0)).

3. Main Result
Proposition 3.1. Let H be a Hilbert space and E be a real 2-uniformly smooth Banach space
with the constant c1 ∈

(
0, 1

‖T‖2

)
, where c1 is positive constant such that ‖J(x)− J(y)‖ ≤ c1‖x− y‖

for all x, y ∈ E. Let JE be the duality mapping on E. Let B : E → 2E∗
be an maximal monotone

operator such that B−1(0) 6= ;. Let QB
µ = (I+µJ−1B)−1 be the metric resolvent B. Let T : H → E be

a bounded linear operator such that T 6= ; and T∗ : E∗ → H be an adjoint operator of T . Assume
that T−1(B−10) 6= ;. Let M := T∗JE(T −QB

µT), then M := T∗JE(T −QB
µT) is nonexpansive.

Proof. Since I and QB
µ are nonexpansive mappings, and we know that ‖JE(x)−JE(y)‖ ≤ c1‖x−y‖.

We compute

‖Mx−M y‖ = ‖T∗JE(I −QB
µ )Tx−T∗JE(I −QB

µ )T y‖ = ‖T∗(JE(I −QB
µ )Tx− JE(I −QB

µ )T y)‖
≤ ‖T‖ ‖JE(T −QB

µT)x− JE(I −QB
µ )T y‖ ≤ c1‖T‖ ‖(I −QB

µ )Tx− (I −QB
µ )Tx‖2

≤ c1‖T‖ ‖Tx−T y‖ = c1‖T‖ ‖T(x− y)‖
≤ c1‖T‖2 ‖x− y‖.

Since c1 ∈
(
0, 1

‖T‖2

)
, therefore M is a nonexpansive mapping.
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Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert spaces H, and let E
be a real uniformly convex and 2-uniformly smooth of Banach space with c1 ∈

(
0, 1

‖T‖2

)
. Let

JE be the duality mapping on E. Let A : H → 2H be maximal monotone operator such that
A−1(0) 6= ; and let B : E → 2E∗

be an maximal monotone operator such that B−1(0) 6= ;. Let
JA
λn

= (I +λn A)−1 be the resolvent of A for λn > 0 and QB
µ = (I +µJ−1B)−1 be the metric resolvent

of B for µ > 0. Let f : C → C be a k−contraction mapping with k ∈ (0,1). Let T : H → E be a
bounded linear operator such that T 6= ; and T∗ : E∗ → H be an adjoint operator of T . Assume
that Ω := A−1(0)∩T−1(B−1(0)) 6= ;. Let x1 ∈ H, and let {xn} be a sequence generate by the following{

yn =σnxn + (1−σn)JA
λn

(xn −λnT∗JE(Txn −QB
µTxn)),

xn+1 =αn f (xn)+βnxn +γn yn, ∀ n ≥ 0,
(3.1)

where {σn}, {αn}, {βn}, {γn}⊂ (0,1) and αn+βn+γn = 1. Assume that the control sequences satisfy
the following conditions:

(a) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(b) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(c) 0< liminf
n→∞ λn ≤λn ≤ limsup

n→∞
λn < 2

‖T‖2 , and lim
n→∞ |λn+1 −λn| = 0;

(d) 0< liminf
n→∞ σn ≤σn ≤ limsup

n→∞
σn < 1, and lim

n→∞ |σn+1 −σn| = 0;

(e) 0< liminf
n→∞ γn ≤ γn.

Then {xn} converges strongly to a point x̄ ∈Ω, where x̄ =QΩ f (x̄).

Proof. We have divide the proof into five steps.
Step 1. We prove that the sequence {xn} is bounded.
Fixed p ∈Ω := A−1(0)∩T−1(B−1(0)) 6= ;, then we have p ∈ (A)−1(0)=Fix(JA

λn
), i.e., JA

λn
p = p and

T p =QB
µ (T p), and by Lemma 2.12 we have p = JA

λn
(p−λnT∗JE(T p−QB

µT p).
Set M := T∗JE(T −QB

µT), we see that

‖yn − p‖2 = ‖σnxn + (1−σn)JA
λn

(I −λnM)xn − p‖2

≤σn‖(xn − p)‖2 + (1−σn)‖[JA
λn

(I −λnM)xn − p]‖2

−σn(1−σn)g(‖xn − JA
λn

(I −λnM)xn‖)

≤σn‖xn − p‖2 + (1−σn)‖xn − p‖2 −σn(1−σn)g(‖xn − JA
λn

(I −λnM)xn‖)

= ‖xn − p‖2 −σn(1−σn)g(‖xn − JA
λn

(I −λnM)xn‖). (3.2)

Therefore ‖yn − p‖2 ≤ ‖xn − p‖2, this implies that

‖yn − p‖ ≤ ‖xn − p‖.

Consider

‖xn+1 − p‖ = ‖αn f (xn)+βnxn +γn yn − p‖
≤αn‖ f (xn)− p‖+βn‖xn − p‖+γn‖yn − p‖
≤αnk‖xn − p‖+αn‖ f (p)− p‖+βn‖xn − p‖+γn‖yn − p‖
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≤ [αnk+βn +γn]‖xn − p‖+αn‖ f (p)− p‖
= [αnk+ (1−αn)]‖xn − p‖+αn‖ f (p)− p‖‖
≤ (1+αnk−αn)‖xn − p‖+αn‖ f (p)− p‖‖
≤ (1−αn(1−k))‖xn − p‖+αn‖ f (p)− p‖

= (1−αn(1−k))‖xn − p‖+αn(1−k)
‖ f (p)− p‖

(1−k)
.

It follows by mathematical induction, we get that

‖xn+1 − p‖ ≤max
{
‖xn − p‖,

‖ f (p)− p‖
1−k

}
.

Therefore, this show that the sequence {xn} is bounded. Furthermore, since ‖yn − p‖ ≤ ‖xn − p‖
then we obtain that {yn} is bounded too. Also, we have { f (x)}, {JA

λn
(I −λnM)} are bounded

sequence.

Step 2. We prove that the sequence {xn} is asymptotically regular, i.e., lim
n→∞‖xn+1 − xn‖ = 0.

Step 2.1. By use Lemma 2.10, then we set xn+1 :=βnxn+(1−βn)zn and we let zn := αn f (xn)+γn yn
(1−βn) .

We compute

zn+1 − zn = αn+1 f (xn+1)+γn+1 yn+1

(1−βn+1)
− αn f (xn)+γn yn

(1−βn)

= αn+1 f (xn+1)+ yn+1 − (αn+1 +βn+1)yn+1

(1−βn+1)
− αn f (xn)+ yn − (αn +βn)yn

(1−βn)

= αn+1 f (xn+1)+ (1−βn+1)yn+1 −αn+1 yn+1

(1−βn+1)
− αn f (xn)+ (1−βn)yn −αn yn

(1−βn)

= αn+1( f (xn+1)− yn+1)+ (1−βn+1)yn+1

(1−βn+1)
− αn[ f (xn)− yn]+ (1−βn)yn

(1−βn)

= αn+1[ f (xn+1)− yn+1]
(1−βn+1)

− αn[ f (xn)− yn]
(1−βn)

+ yn+1 − yn, (3.3)

which implies that

‖zn+1 − zn‖ ≤ αn+1

(1−βn+1)
‖ f (xn+1)+ yn+1‖+ αn

(1−βn)
‖ f (xn)− yn‖+‖yn+1 − yn‖. (3.4)

Step 2.2 Next, we compute ‖yn+1 − yn‖.

Observe that

‖JA
λn+1

(I −λn+1M)xn+1 − JA
λn

(I −λnM)xn‖
≤ ‖JA

λn+1
(I −λn+1M)xn+1 − JA

λn+1
(I −λn+1M)xn‖+‖JA

λn+1
(I −λn+1M)xn − JA

λn
(I −λnM)xn‖

≤ ‖xn+1 − xn‖+
∥∥∥∥JA

λn+1
(I −λn+1M)xn − JA

λn+1

[
λn+1

λn
(I −λnMxn)−

(
1− λn+1

λn

)
JA
λn

(I −λnM)xn

]∥∥∥∥
≤ ‖xn+1 − xn‖+

∥∥∥∥(xn −λn+1M)xn − λn+1

λn
xn +λn+1Mxn +

(
1− λn+1

λn

)
JA
λn

(I −λnM)xn

∥∥∥∥
≤ ‖xn+1 − xn‖+

∥∥∥∥(
1− λn+1

λn

)
xn + (λn+1 −λn)Mxn +

(
1− λn+1

λn

)
JA
λn

(I −λnM)xn

∥∥∥∥
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≤ ‖xn+1 − xn‖+
∣∣∣∣λn −λn+1

λn

∣∣∣∣‖xn‖+|λn+1 −λn|‖Mxn‖+
∣∣∣∣λn −λn+1

λn

∣∣∣∣‖JA
λn

(xn −λnMxn)‖.

Consider that

yn+1 − yn =σn+1(xn+1 − xn)+ (1−σn+1)
(
JA
λn+1

(I −λn+1M)xn+1 − JA
λn

(I −λnM)xn
)

+ (σn+1 −σn)(xn − JA
λn

(xn −λnMxn).

Then, we have

‖yn+1 − yn‖
≤σn+1‖xn+1 − xn‖+ (1−σn+1)‖JA

λn+1
(I −λn+1M)xn+1 − JA

λn
(I −λnM)xn‖

+ (σn+1 −σn)‖xn − JA
λn

(xn −λnMxn)‖
≤σn+1‖xn+1 − xn‖+|σn+1 −σn|‖xn − JA

λn
(xn −λnMxn)‖+ (1−σn+1)

×
(
‖xn+1 − xn‖+

∣∣∣∣λn −λn+1

λn

∣∣∣∣‖xn‖+|λn+1 −λn|‖Mxn‖+
∣∣∣∣λn −λn+1

λn

∣∣∣∣‖JA
λn

(xn −λnMxn)‖
)

≤ ‖xn+1 − xn‖+|σn+1 −σn|‖xn − JA
λn

(xn −λnMxn)‖

+ (1−σn+1)
(∣∣∣∣λn −λn+1

λn

∣∣∣∣‖xn‖+|λn+1 −λn|‖Mxn‖+
∣∣∣∣λn −λn+1

λn

∣∣∣∣‖JA
λn

(xn −λnMxn)‖
)
. (3.5)

Step 2.3. To show that limsup
n→∞

(‖zn+1− zn‖−‖xn+1−xn‖)≤ 0. From (3.4) and (3.5) we derive that

‖zn+1 − zn‖−‖xn+1 − xn‖

≤ αn+1

(1−βn+1)
‖ f (xn+1)+ yn+1‖− αn

(1−βn)
‖ f (xn)− yn‖+|σn+1 −σn|‖xn − JA

λn
(xn −λnMxn)‖

+ (1−σn+1)
[∣∣∣∣λn−λn+1

λn

∣∣∣∣‖xn‖+|λn+1−λn|‖Mxn‖+
∣∣∣∣λn−λn+1

λn

∣∣∣∣‖JA
λn

(xn−λnMxn)‖
]

. (3.6)

It follows from condition (a)-(d), we obtain

limsup
n→∞

(‖zn+1 − zn‖−‖xn+1 − xn‖)≤ 0. (3.7)

By using Lemma 2.10, we obtain that

limsup
n→∞

‖zn − xn‖ = 0. (3.8)

Since xn+1 − xn = (1−βn)(zn − xn), therefore

lim
n→∞‖xn+1 − xn‖ = 0. (3.9)

Next, we prove that ‖yn − xn‖→ 0, as n →∞.

Since zn = αn f (xn)+γn yn
(1−βn) = αn

(1−βn) f (xn)+ (1− αn
(1−βn) )yn, we have

‖zn − yn‖ =
∥∥∥∥ αn

(1−βn)
f (xn)+

(
1− αn

(1−βn)

)
yn − yn

∥∥∥∥
=

∥∥∥∥ αn

(1−βn)
f (xn)− αn

(1−βn)
yn

∥∥∥∥
≤ αn

(1−βn)
‖ f (xn)− yn‖. (3.10)
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By condition (a) we obtain that

lim
n→∞‖zn − yn‖ = 0. (3.11)

From (3.8) and (3.10), we get that

‖yn − xn‖ ≤ ‖yn − zn‖+‖zn − xn‖→ 0, as n →∞. (3.12)

Therefore

lim
n→∞‖yn − xn‖ = 0. (3.13)

Step 3. To show that lim
n→∞‖xn − JA

λn
(I −λnM)xn‖ = 0 and lim

n→∞‖Txn −QB
u Txn‖ = 0.

Step 3.1. We want to show that lim
n→∞‖xn − JA

λn
(I −λnM)xn‖ = 0. Consider

‖xn+1 − p‖2 = ‖αn f (xn)+βnxn +γn yn − p‖2

= ‖αn( f (xn)− f (p))+βn(xn − p)+γn(yn − p)+αn( f (p)− p)‖2

≤αn‖ f (xn)− f (p)‖2 +βn‖xn − p‖2 +γn‖yn − p‖2 +2αn〈 f (p)− p, xn+1 − p〉
≤αnk‖xn − p‖2 +βn‖xn − p‖2 +γn‖yn − p‖2 +2αn〈 f (p)− p, xn+1 − p〉
=αnk‖xn − p‖2 +βn‖xn − p‖2 +γn‖xn − p‖2

−γnσn(1−σn)g(‖xn − JA
λn

(I −λnM)xn‖)+2αn〈 f (p)− p, xn+1 − p〉
= [αnk+βn +γn]‖xn − p‖2 −γnσn(1−σn)g(‖xn − JA

λn
(I −λnM)xn‖)

+2αn〈 f (p)− p, xn+1 − p〉
≤ ‖xn − p‖2 −γnσn(1−σn)g(‖xn − JA

λn
(I −λnM)xn‖)+2αn〈 f (p)− p, xn+1 − p〉.

It follow that

γnσn(1−σn)g(‖xn − JA
λn

(I −λnM)xn‖)

≤ ‖xn − p‖2 −‖xn+1 − p‖2 +2αn〈 f (p)− p, xn+1 − p〉
≤ ‖xn+1 − xn‖ (‖xn − p‖+‖xn+1 − p‖)+2αn〈 f (p)− p, xn+1 − p〉.

By condition (a), (d), (e), (3.9) and by property of g, we have

lim
n→∞‖xn − JA

λn
(I −λnM)xn‖ = 0. (3.14)

Step 3.2 We want to show that lim
n→∞‖Txn −QB

u Txn‖ = 0. We consider

‖yn − p‖2 = ‖σnxn + (1−σn)JA
λn

(I −λnM)xn − p‖2

≤σn‖xn − p‖2 + (1−σn)‖JA
λn

(I −λnM)xn − p‖2

≤σn‖xn − p‖2 + (1−σn)‖(I −λnM)xn − p‖2

≤σn‖xn − p‖2 + (1−σn)‖(xn − p)−λnMxn‖2

≤σn‖xn − p‖2 + (1−σn){‖xn − p‖2 −2λn〈xn − p,T∗JE(Txn −QB
u Txn)〉

+λ2‖T∗JE(Txn −QB
u Tx)‖2}

=σn‖xn − p‖2 + (1−σn){‖xn − p‖2 −2λn〈Txn −T p, JE(Txn −QB
u Txn)〉

+λ2‖T∗JE(Txn −QB
u Txn)‖2}
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=σn‖xn − p‖2 + (1−σn){‖xn − p‖2 −2λn〈Txn −QB
u Txn +QB

u Txn −T p, JE(Txn −QB
u Txn)〉

+λ2‖T∗JE(Txn −QB
u Txn)‖2}

=σn‖xn − p‖2 + (1−σn){‖xn − p‖2 −2λn〈Txn −QB
u Txn, JE(Txn −QB

u Txn)〉
−2λnQB

u Txn −T p, JE(Txn −QB
u Txn)〉+λ2‖T‖2‖Txn −QB

u Txn‖2}

≤σn‖xn − p‖2 + (1−σn)

{‖xn − p‖2 −2λn〈Txn −QB
u Txn, JE(Txn −QB

u Txn)〉+λ2‖T‖2‖Txn −QB
u Txn‖2}

≤ ‖xn − p‖2 −2λn(1−σn)‖Txn −QB
u Txn‖2 +λ2

n(1−σn)‖T‖2‖Txn −QB
u Txn‖2

≤ ‖xn − p‖2 − (1−σn)(2λn −λ2‖T‖2)‖Txn −QB
u Tx‖2.

Note that

‖xn+1 − p‖2 = ‖αn f (xn)+βnxn +γn yn − p‖2

≤αn‖ f (xn)− p‖2 +βn‖xn − p‖2 +γn‖yn − p‖2

=αn‖ f (xn)−p‖2+βn‖xn−p‖2+γn(‖xn−p‖2−(1−σn)(2λn −λ2
n‖T‖2)‖Txn −QB

µTxn‖2)

=αn‖ f (xn)− p‖‖+ (1−αn)‖xn − p‖2 −γn(1−σn)(2λn −λ2
n‖T‖2)‖Txn −QB

µTxn‖2

≤αn‖ f (xn)− p‖‖+‖xn − p‖2 −γn(1−σn)(2λn −λ2
n‖T‖2)‖Txn −QB

µTxn‖2.

It follow that

γn(1−σn)(2λn −λ2
n‖T‖2)‖Txn −QB

µTxn‖2 ≤αn‖ f (xn)− p‖‖+‖xn − p‖2 −‖xn+1 − p‖2

=αn‖ f (xn)− p‖‖+‖xn − xn+1‖‖(xn − p)+ (xn+1 − p)‖.

Since σn ∈ [0,1), and by condition (a), (c) and (3.9), then we have

lim
n→∞‖Txn −QB

u Txn‖ = 0. (3.15)

Step 3.3. To show that lim
n→∞‖T∗JE(Txn −QB

u xn)‖ = 0. Since T is bounded linear and T∗ is
adjoint operator of T , we have

‖T∗JE(Txn −QB
u xn)‖2 ≤ ‖T‖2‖JE(Txn −QB

u Txn)‖2

= ‖T‖2‖Txn −QB
u Txn‖2. (3.16)

By (3.15) then

lim
n→∞‖T∗JE(Txn −QB

u Txn)‖ = 0. (3.17)

Step 4. We want to show thatlimsup
n→∞

〈 f (x̄)− x̄, xn − x̄)〉 ≤ 0, ∀ xn ∈Ω, where x̄ =QΩ f (x̄).

Step 4.1. Set W :=
[
I + γn(1−σn)

(1−αn) JA
λn

(I − λnM)
]
, where M := T∗JE(T − QB

µT). Then W is
nonexpansive mapping. We see that xn+1 :=αn f (xn)+ (αn)Wxn.

By apply Lemma 2.4, then we let xt be a unique solution of equation xt = t f (xt)+ (1− t)Wxt,
∀ t ∈ (0,1). Namely, xt be a fixed point of contraction mapping which is unique fixed point.
Putting x̄ =QΩ f (x̄)= lim

t→0
xt, where QΩ f (x̄) is an unique sunny nonexpansive retraction from C

onto Fix(W), as t → 0.
Since we know that Fix(W)=Fix(JA

λn
)∩Fix(QB

µ (T))=Ω. Thus, we know that xt → x̄ =QΩ f (x̄).
By Lemma 2.4, then there exist 〈 f (x̄)− x̄, q− x̄〉 ≤ 0, ∀ f ∈Ξc , ∀ q ∈Ω.
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Step 4.2 To show that xn → q ∈ A−1(0).
Next, we show that there exist q such that 0 ∈ Aq. Let sn := JA

λn
(I −λnT∗JE(T −QB

µT)xn.
We obtain

(I −λnT∗JE(T −QB
µT)xn ∈ (I +λn A)sn

xn −λnT∗JE(Txn −QB
µTxn) ∈ sn +λn Asn

xn −λnT∗JE(Txn −QB
µTxn) ∈ sn +λn Asn

xn − sn −λnT∗JE(Txn −QB
µTxn) ∈λn Asn

1
λn

(xn − sn −λnT∗JE(Txn −QB
µTxn)) ∈ Asn. (3.18)

Next, we show that lim
n→∞‖xn − sn −λnT∗JE(Txn −QB

µTxn)‖ = 0, we observe that

‖xn − sn −λnT∗JE(Txn −QB
µTxn)‖ = ‖(xn − sn)−λnT∗JE(Txn −QB

µTxn)‖

≤ ‖xn − sn‖+ 1
λn

‖T∗JE(Txn −QB
µTxn)‖.

From (3.12),we get ‖xn − sn‖→ 0, as n →∞ and (3.14), we derive that

lim
n→∞‖xn − sn −λnT∗JE(Txn −QB

µTxn)‖ = 0. (3.19)

By (3.18) we obtain that 0 ∈ Asn .
Since lim

n→∞‖xn−sn‖ = 0, and the boundedness of {xn} such that {xn} has a weakly convergence
subsequence, i.e., xni * q. From 0 ∈ Asn, there exist q solve 0 ∈ Aq.

Step 4.3. To show that xn → q ∈ T−1(B−1(0)). Namely, we show that for some q such that
Tq solves 0 ∈ B(Tq). Since QB

µ is nonexpansive, then we apply the demiclose principle, i.e.,
(I −QB

µ ) is demiclose at zero. Since T is linear and bounded, then we have Txni * Tq and from
‖Txn −QB

µTxn‖→ 0,as n →∞, this implies that Tq =QB
µTq. Therefore q ∈Ω.

Next, we show that {xn j } be another subsequence of {xn} such that xn j * q′. That is
q′ ∈ Fix(W) = Fix(JA

r )∩Fix(QB
µ (T)) =Ω. We want to show that q = q′. Assume that q 6= q′, by

Opial’s condition we have

lim
n→∞‖xn − q‖ = liminf

i→∞
‖xni − q‖ < liminf

i→∞
‖xni − q′‖

= lim
n→∞‖xn − q′‖ = lim

j→∞
‖xn j − q′‖

≤ liminf
j→∞

‖xn j − q‖ = lim
n→∞‖xn − q‖.

This contradiction. Thus, we have q = q′. This implies that xn * q ∈Ω.

Step 4.4. From above step we have q ∈Ω. From step 4.1 there exist 〈 f (x̄)− x̄, q− x̄〉 ≤ 0, ∀q ∈Ω,
where x̄ =QΩ f (x̄).

Next, we show that limsup
n→∞

〈 f (x̄)− x̄, xn − x̄)〉 ≤ 0, ∀ xn ∈Ω, where x̄ =QΩ f (x̄).

From step 4.3 we have 〈 f (x̄)− x̄, q− x̄〉 ≤ 0, ∀ f ∈Ξc, ∀q ∈Ω. To show this, we can choose a
subsequence {xni } of {xn} such that

limsup
n→∞

〈 f (x̄)− x̄, xn − x̄)〉 = lim
i→∞

〈 f (x̄)− x̄, xni − x̄)〉 (3.20)

= 〈 f (x̄)− x̄, q− x̄〉 ≤ 0. (3.21)
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This implies that limsup
n→∞

〈 f (x̄)− x̄, xn+1 − x̄)〉 = limsup
n→∞

〈 f (x̄)− x̄, xn − x̄)〉 ≤ 0 too.

Step 5. Finally, we prove that ‖xn − x̄‖→ 0. We consider

‖xn+1 − x̄‖2 = ‖αn f (xn)+βnxn +γn yn − x̄‖2

= ‖αn( f (xn)− f (x̄))+βn(xn − x̄)+γn(yn − x̄)+αn( f (x̄)− x̄)‖2

≤ ‖αn( f (xn)− f (x̄))+βn(xn − x̄)+γn(yn − x̄)‖2 +2αn〈( f (x̄)− x̄), xn+1 − x̄〉
≤αn‖ f (xn)− f (x̄)‖2 +βn‖xn − x̄‖2 +γn‖yn − x̄‖2 +2αn〈 f (xn)− x̄, xn+1 − x̄〉
≤αnk‖xn − x̄‖2 +βn‖xn − x̄‖2 +γn‖xn − x̄‖2 +2αn〈 f (xn)− x̄, xn+1 − x̄〉
= [αnk+ (1−αn)]‖xn − x̄‖2 +2αn〈 f (xn)− x̄, xn+1 − x̄〉

= (1−αn(1−k))‖xn − x̄‖2 +αn(1−k)
2

(1−k)
〈 f (xn)− x̄, xn+1 − x̄〉.

This implies that

‖xn+1 − x̄‖2 ≤ (1−αn(1−k))‖xn − x̄‖2 +αn(1−k)
2

(1−k)
〈 f (x̄)− x̄, xn+1 − x̄〉.

By condition (a) and (3.20), then we apply Lemma 2.11 to conclude that

lim
n→∞‖xn − x̄‖ = 0.

This completes the proof.

If the space E = H a Hilbert space. In a Hilbert space, we know that we JE = I is
nonexpansive and linear operator, and c1 = 1. Then we obtain the following corollary.

Corollary 3.3. Let H1, H2 be two Hilbert spaces and let C C be a nonempty closed convex
subset of H1. Let A : H1 → 2H1 be a maximal monotone operator such that A−1(0) 6= ; and let
B : A : H2 → 2H2 be a maximal monotone operator such that B−1(0) 6= ;. Let JA

λn
= (I +λn A)−1 be

the resolvent of A for λn > 0 and JB
µ = (I +µB)−1 be the resolvent of B for µ> 0 . Let f : C → C be

a k−contraction mapping with k ∈ (0,1). Let T : H1 → H2 be a bounded linear operator such that
T 6= ; and T∗ : H2 → H1 be an adjoint operator of T . Assume that Ω := A−1(0)∩T−1(B−1(0)) 6= ;.
Let x1 ∈ H1, and let {xn} be a sequence generate by the following{

yn =σnxn + (1−σn)JA
λn

(xn −λnT∗(Txn − JB
µ Txn)),

xn+1 =αn f (xn)+βnxn +γn yn; ∀ n ≥ 0,
(3.22)

where {σn}, {αn}, {βn}, {γn}⊂ (0,1) and αn+βn+γn = 1. Assume that the control sequences satisfy
the following conditions:

(a) lim
n→∞αn = 0 and

∞∑
n=1

αn =∞;

(b) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(c) 0< liminf
n→∞ λn ≤λn ≤ limsup

n→∞
λn < 2

‖T‖2 , and lim
n→∞ |λn+1 −λn| = 0;

(d) 0< liminf
n→∞ σn ≤σn ≤ limsup

n→∞
σn < 1, and lim

n→∞ |σn+1 −σn| = 0;

(e) 0< liminf
n→∞ γn ≤ γn.

Then {xn} converges strongly to a point x̄ ∈Ω, where x̄ =QΩ f (x̄).
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Proof. Since, an operator M := T∗(T −QB
µT) is inverse strongly monotone in Hilbert spaces.

Moreover (I −λnM) is nonexpansive. The proof is same the our main theorem.

3.1 Split Minimization Problems
In this part, we consider our result for solve the split minimize problem.

3.1.1 Split Minimization Problem Between Banach spaces and Hilbert spaces
We consider our result for solve the split minimize problem between Banach spaces and Hilbert
spaces. The split minimization Problem is formulated as follows:

find a point x̂ ∈ H that solves x̂ = argmin
x∈H

φ(x),

and ŷ= Tx̂ ∈ E that solves ŷ= argmin
x∈E

ϕ(y), (3.23)

where φ : H →R and ϕ : E →R be two proper convex and lower semicontinuous function. The
subdifferential ∂φ of φ is generated by

∂φ(x)= {z ∈ H :φ(y)≥ 〈y− x, z〉+φ(x); ∀ y ∈ H}.

The subdifferential of ϕ at x, for x ∈ E is generated by

∂ϕ(x)= {x∗ ∈ E∗ :ϕ(y)≥ 〈y− x, x∗〉+ϕ(x); ∀ y ∈ E}

We known that the subdifferential operator ∂ϕ(x) : E → 2E∗
is maximal monotone [22, 23].

Then we can see that (∂ϕ)−1(0)= argmin{ϕ(x) : x ∈ E}. We set B = ∂ϕ and QB
µ is metric resolvent

of ∂ϕ, for µ> 0, then we know that

QB
µ (x)=Prox

µϕ
(x)= argmin

{
ϕ(y)+ 1

2µ
‖y− x‖2

}
, y ∈ E.

Also, if we take A = ∂ϕ and JA
λn

is a resolvent of ∂φ, λn > 0, then we know that

JA
λn

(x)=Prox
λnφ

(x)= argmin
{
φ(y)+ 1

2λn
‖y− x‖2

}
, y ∈ H.

We take A = ∂φ and B = ∂ϕ in our main theorem, then we obtain the new iterative scheme
(3.1) becomes that{

yn =σnxn + (1−σn)Proxλnφ(xn −λnT∗JE(Txn −ProxµϕTxn)),
xn+1 =αn f (xn)+βnxn +γn yn; ∀ n ≥ 0 .

(3.24)

3.1.2 Split Minimization Problem Between in Hilbert spaces
Next, we consider our Corollary 3.3 for solve the split minimize problem in two Hilbert spaces.
The split minimization problem is formulated as follows:

find a point x̂ ∈ H1 that solves x̂ = argmin
x∈H1

φ(x),

and ŷ= Tx̂ ∈ H2 that solves ŷ= argmin
x∈H2

ϕ(y), (3.25)

where φ and ϕ be two proper convex and lower semicontinuous function. For φ : H1 →R, the
subdifferential ∂φ of φ is defined by

∂φ(x)= {z ∈ H1 :φ(y)≥ 〈y− x, z〉+φ(x); ∀ y ∈ H1}.
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For ϕ : H2 →R be a proper convex and lower semicontinuous function, the subdifferential
∂ϕ of ϕ defined by

∂ϕ(x)= {z ∈ H2 :ϕ(y)≥ 〈y− x, z〉+ϕ(x); ∀ y ∈ H2}.

In Hilbert spaces, from [27] we know that 0 ∈ ∂φ(x)⇔φ(x)= min
y∈H1

φ(y) and also 0 ∈ ∂ϕ(x)⇔
ϕ(x)= min

y∈H2
ϕ(y). The set of minimizers of φ defined by

argminφ(y)= {x ∈ H : f (x)=minφ(y), y ∈ H1},

and the set of minimizers of ϕ defined by

argminϕ(y)= {x ∈ H : f (x)=minϕ(y), y ∈ H2}.

We know that

JA
λn

(x)=Prox
λnφ

(x)= argmin
{
φ(y)+ 1

2λn
‖y− x‖2, y ∈ H1

}
,

and

JA
µ (x)=Prox

µφ
(x)= argmin

{
φ(y)+ 1

2µ
‖y− x‖2, y ∈ H2

}
.

Also, if we take A = ∂φ and B = ∂ϕ in our Corollary 3.3, then we obtain the new iterative
scheme (3.22) change to the iterative scheme (3.26).{

yn =σnxn + (1−σn)Proxλnφ(xn −λnT∗(Txn −ProxµϕTxn)),
xn+1 =αn f (xn)+βnxn +γn yn; ∀ n ≥ 0.

(3.26)

4. Conclusion
In this paper, we defined a new iterative scheme for approximation the split common null point
problems for set-valued maximal monotone operators by using a viscosity method and some
fixed point technically proving method between Banach spaces and Hilbert spaces. We obtained
the strong convergence theorem for set-valued maximal monotone operators. We also applied
that our result can be solves the split minimization problems.
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