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Optimal Control Policy for State Dependent Queueing Model
with Service Interruption, Setup and Vacations

Madhu Jain and Deepa Chauhan

Abstract. Present investigation deals with optimal management policy for
Markovian queue with server breakdowns, vacations and setup. The customers
arrive in Poisson fashion to get the service. The server may breakdown during
the service and goes for repair immediately. By applying probability generating
function technique queue length distribution is obtain for different states of the
server. Further we determine the probability of empty system, expected number
of units in the system, total expected cost function etc. Cost analysis has also been
done. To validate analytic results, numerical experiment has been performed.

1. Introduction

Due to paramount applications in many areas including manufacturing system,
production systems, computer processing, communication network, transportation
and distribution systems etc., the performance modeling of queueing model
with vacation and setup time is more useful in congestion situations to predict
quantitatively various operational characteristics of such system. We study
queueing system with single removable and non-reliable sever under N-policy

Two phase queueing system with N-policy was considered by Kim and Park
(2003). An M X/G/1 queueing system with two phases of heterogeneous service
under N-policy was studied by Choudhary and Paul (2004). M/G/1 queueing
system was considered by Lee and Kim (2006) where the speed of the server
depends on the amount of work. Manufacturing lead time in a production has
been analyzed by Lee et al. (2007) with threshold policy. Chae and Lim (2008)
presented a procedure to obtain the joint transform of the length of busy period
at the instant busy period ends for GI/M/c queue under N-policy. Using the
generating function technique, the system state evolution was analyzed by Wang
et al. (2009) to determine the joint optimal value of N at a minimum cost. Ke et
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al. (2010) studied the operating characteristics of a batch arrival queueing system
under N policy.

Queueing model with service breakdown is helpful in predicting the
performance of various machining system. A queueing model with multiple types
of server breakdowns was discussed by Gray et al. (2004). Ke (2007) studied the
operating characteristics of a M X/G/1 queueing system under vacation policies
with startup/closedown times. Single unreliable server in M X/G/1 queueing
system with multiple vacations was considered by Wang et al. (2007) by assuming
that as soon as the system becomes empty the server leaves the system for a
vacation. Liu et al. (2009) investigated an M/G/1 queue with preemptive resume
and feedback where an unreliable server leaves the system for N-policy vacation
as soon as the system empties.

The performance of a machine is affected by machine failure. This failure
can be adjusted by providing spare parts or by repair provisioning. However
in many realistic situations some time is needed to initiate service, which is
called startup time or setup time. The optimal control of M/G/1 queueing system
with server vacations, startup and breakdowns was suggested by Ke (2003).
Optimal management policy for heterogeneous arrival queueing system with server
breakdowns and vacations was provided by Ke and Pearn (2004). Diaz and Moreno
(2009) studied a queueing system where the service station operates under an
N-policy with early setup.

In this paper we extend the work of Ke and Pearn (2004) for heterogeneous
arrival queueing system with server breakdowns, vacations, setup time and
machine repair. Firstly we establish the steady state results to obtain probability
distributions of the number of units in the system. Secondly we determined
the probabilities of empty system and expected number of units in the system.
Thirdly we formulate total expected cost for the system and determine the optimal
management policy for such type of queueing system.

2. Model Description and Governing Equations

Consider a single non-reliable removable server Markovian queueing model
with breakdown, repair and setup under N-policy. Let the state i = 0 represents
the state when server is on vacation; i = 1, when server is working; i = 2, when
server is found to be broken down; i = 3, when server is under repair. We assume
that customer’s arrival follows a Poisson process with rates λi (i = 0, 1, 2, 3) where
0, 1, 2, 3 denote the arrival rates of customers during the idle, busy, breakdown and
repair period, respectively.

The server may serve only one unit at a time and the service rates are
exponentially distributed with mean 1/µ. Whenever the system is empty the
server goes for vacation, If there are at least N units in the system the server
will come back and starts service. The duration of vacations is exponentially
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distributed with mean 1/θ . Duration of each vacation is independent of arrival
process, the service time and breakdown times. During the service the server may
breakdown at any time with Poisson breakdown rate α. The setup time to initiate
the repair is exponentially distributed with rate ν . When the server fails, it is
immediately repaired with repair rate β . Once the repair of the server is completed,
it immediately starts to provide service.

Following probabilities are used through out the paper for formulating the
model mathematically:

P0(n) The probability of being n customers in the system and server is on
vacation.

P1(n) The probability of being n customers in the system when server is
working

P2(n) The probability of being n customers in the system when server is found
to be broken down.

P3(n) The probability of being n customers in the system when server is under
repair.

Hi(z) The probability generating function of Pi(n), i = 0, 1, 2, 3

E(Ni) Expected number of costumers in the system when the server is in the
state i, i = 0, 1, 2, 3.

Steady state equations governing the model are given as follows:

λ0P0(0) = µP0(1),(2.1)

λ0P0(n) = λ0P0(n− 1), 1≤ n≤ N − 1,(2.2)

(λ0 + θ)P0(n) = λ0P0(n− 1), n≥ N ,(2.3)

(λ1 +µ+α)P1(1) = µP1(2) + βP3(1),(2.4)

(λ1+µ+α)P1(n) = µP1(n+1)+βP3(n)+λ1P1(n− 1), 2≤ n≤ N − 1,(2.5)

(λ1+µ+α)P1(n) = µP1(n+1)+βP3(n)+λ1P1(n− 1)+θ P0(0), n≥ N ,(2.6)

(λ2 + ϑ)P2(1) = αP1(1),(2.7)

(λ2 + ϑ)P2(n) = αP1(n) +λ2P2(n− 1), n≥ 2,(2.8)

(λ3 + β)P3(1) = ϑP2(1),(2.9)

(λ3 + β)P3(n) = ϑP2(n) +λ3P3(n− 1), n≥ 2 .(2.10)

3. Probaility Generating Functions

We define the generating function corresponding the probabilities Pi(n), i =
0, 1, 2, 3 as follows:

H0(z) =
∞∑

n=0

znP0(n),
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Hi(z) =
∞∑

n=1

znPi(n), i = 1, 2, 3 .

Multiplying equation (2.1) by z, equations (2.2) and (2.3) by zn (n ≥ 1), and then
adding for all possible values of n, we get:

(3.1) H0(z) =
�

1− zn

1− z
+

λ0zn

λ0 + θ +λ0z

�
P0(0) .

Now multiplying (2.4)-(2.6) by zn+1(n≥ 1) and adding for all possible value of n,
we obtain:

(3.2) (λ1z2−(λ1+µ+α)z+µ)H1(z)+β(z)H3(z) = λ0

�
z− θzN+1

λ0 + θ −λ0z

�
P0(0) .

Multiplying (2.7) and (2.8) by zn(n≥ 1) and then adding, we have:

(3.3) (λ2z−λ2 − ϑ)H2(z) +αH1(z) = 0 .

Similarly from (2.9) and (2.10), we obtain:

(3.4) (λ3z−λ3 − β)H3(z) + ϑH2(z) = 0 .

Solving the equations (3.2)-(3.4) for H1(z), H2(z) and H3(z), we find

H1(z) =
λ0(λ2z−λ2−ϑ)(λ3z−λ3−β)(zλ0+zθ−λ0z2−θzN+1)P0(0)

[(λ1z2−(λ1+µ+α)z+µ)(λ3z−λ3−β)(λ2z−λ2−ϑ)+αβzϑ]
× (λ0+θ−λ0z)




,(3.5)

H2(z) =
(−α)(λ3z−λ3−β)(zλ0+zθ−λ0z2−θzN+1)λ0P0(0)

[(λ1z2−(λ1+µ+α)z+µ)(λ3z−λ3−β)(λ2z−λ2−ϑ)+αβzϑ]
× (λ0+θ−λ0z)




,(3.6)

H3(z) =
λ0αϑ(zλ0+zθ−λ0z2−θzN+1)P0(0)

[(λ1z2−(λ1+µ+α)z+µ)(λ3z−λ3−β)(λ2z−λ2−ϑ)+αβzϑ]
× (λ0+θ−λ0z)




.(3.7)

Now H(z) which represents the p.g.f. of the total number of customers in the
system, is obtained as

H(z) =
3∑

i=0

Hi(z) .(3.8)

We evaluate H0(1), H1(1), H2(1) and H3(1) by applying L’Hospital’s rule in
equations (3.1), (3.5), (3.6) and (3.7), as the numerator and denominator are
both 0 in these equations. Thus, we obtain

H0(1) =
�

N +
λ0

θ

�
P0(0) ,(3.9)
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H1(1) =
βϑλ0(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
,(3.10)

H2(1) =
αβλ0(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
,(3.11)

H3(1) =
λ0αϑ(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
.(3.12)

To establish P0(0), we use the normalizing condition and obtain

(3.13) P0(0) =
�

N +
λ0

θ
+

λ0(λ0 + θN)(βϑ+αβ +αϑ)
θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

�−1

.

4. The Expected Queue Length

To determine E (Ni), i = 0, 1, 2, 3 we use the probability generating function
Hi(Z) given in equations (3.9)-(3.12) and obtain

E(N0) =
�

N(N − 1)
2

+
λ0(λ0 + Nθ)

θ 2

�
P0(0) ,(4.1)

E(N1) =
�
λ0βϑ(2λ0 + Nθ(N + 1))− 2(λ0 + θN)

2θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
(4.2)

+
ϑβλ2

0(λ0 + Nθ)

θ 2(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

−

 
λ0ϑβ(λ0 + Nθ){(λ1 −µ−α)(λ3ϑ+ βλ2)
+αλ2λ3 −λ1βϑ}

!

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)2

�
P0(0) ,

E(N2) =
�
αβλ0(2λ0 + Nθ(N + 1))− 2αλ0λ3(λ0 + Nθ )

2θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
(4.3)

+
αβλ2

0(λ0 + Nθ)

θ 2(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

−

 
λ0αβ(λ0 + Nθ){(λ1 −µ−α)(λ3ϑ+ βλ2)
+αλ2λ3 −λ1βϑ}

!

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)2

�
P0(0) ,

E(N3) =
�

αϑλ0(2λ0 + Nθ(N + 1))
2θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

(4.4)

+
αϑλ2

0(λ0 + Nθ)

θ 2(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
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−

 
λ0αϑ(λ0 + Nθ){(λ1 −µ−α)(λ3ϑ+ βλ2)
+αλ2λ3 −λ1βϑ}

!

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)2

�
P0(0) .

The expected number of customers is given by

E(N) =
3∑

i=0

E(Ni)(4.5)

=
�

N(N − 1)
2

+
λ0(λ0 + Nθ)

θ 2

+

 
λ0(2λ0 + Nθ(N + 1))(βϑ+αβ +αϑ)
−2λ0(λ0 + Nθ)(λ3ϑ+λ2β +λ3α)

!

2θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

+
λ2

0(λ0 + Nθ )(αβ +αϑ+ βϑ)

θ 2(µβϑ−λ1βϑ−αϑλ3 −αβλ2)

−

 
λ0(λ0 + Nθ)(αβ +αϑ+ βϑ)
×{(λ1 −µ−α)(λ3ϑ+ βλ2) +αλ2λ3 −λ1βϑ}

!

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)2

�
P0(0) .

5. Optimal N-policy and Cost Analysis

In order to design optimal policy we shall derive some performance indices for
different system states, which are defined as follows:

(a) Idle period (I): This is the length of time per cycle when server is turned off.
(b) Busy period (B): This is the length of time per cycle when server is turned

on and is operational.
(c) Down period (D): This is the length of time per cycle when server is turned

on and found to be broken down.
(d) Repair period (R): The duration for which server is found to be under repair

is known as repair period.

Let the expected lengths of the idle period, the busy period, the down period
and the repair period are denoted by E[I], E[B], E[D] and E[R], respectively. The
length of idle period is the sum of N exponential random variables each having
mean 1/λ. Thus, the expected length of idle period is given by

E[I] = N/λ0 .

The expected length of completion period E[H] and the expected length of cycle
E[C] is given by

E[H] = E[B] + E[D] + E[R] ,

E[C] = E[I] + E[B] + E[D] + E[R] .
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From equations (3.9)-(3.12), we obtain the long run fraction of time, for which
server is idle, busy, broken down and under repair, respectively as follows:

E[I]
E[C]

= H0(1) =
�

N +
λ0

θ

�
P0(0) ,(5.1)

E[B]
E[C]

= H1(1) =
βϑλ0(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
,(5.2)

E[D]
E[C]

= H2(1) =
αβλ0(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
,(5.3)

E[R]
E[C]

= H3(1) =
λ0αϑ(λ0 + θN)P0(0)

θ(µβϑ−λ1βϑ−αϑλ3 −αβλ2)
.(5.4)

From equations (5.2) and (5.3) we get E[C] as

(5.5)
1

E[C]
=
λ0(Nθ +λ0)

Nθ
P0(0) .

Now we develop a cost model by considering N as decision variable. Our
objective is to determine the optimal value of N , say N ∗ so that the cost function
is minimized. Let us denote the cost factors associated with different activities as
follows

Ch = holding cost per unit time for each unit present in the system.

Cs = start up cost per unit time.

Cb = cost per unit time for keeping the server working.

Cd = breakdown cost per unit time for broken server.

Cr = repair cost per unit time.

Using the definition of each cost element listed above, the total expected cost
function per unit time is given by

Tc(N) = Cn Ls + Cs
1

E[C]
+ Cb

E[B]
E[C]

+ Cd
E[D]
E[C]

+ Cr
E[R]
E[C]

.(5.6)

We can establish the optimal value N ∗, by differentiating (??) with respect to N
and setting the result to be zero, which gives the minimum cost function, i.e.

(5.7)
∂ Tc(N)
∂ N

= 0 .

The value of N may not be integer. The best positive integer value of N is one of
the integers surrounding N ∗ which gives a smaller cost Tc .

6. Sensitivity Analysis

We carry out extensive computations for various combination of system
parameter by setting the following cost elements

Ch = 40, Cs = 4000, Cb = 1000, Cr = 200, and Cd = 800.
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The optimal threshold parameter N ∗ and the corresponding minimum expected
cost T C(N ∗) are summarized in Table 1-4 for different sets of (λ0,λ1), (λ1,λ2),
(λ2,λ3) and (λ1,λ3), respectively by setting other parameters.

Tables 1-7 depict the expected number of customers in the system E(N) for
default parameters we have (l = 0.5, m = 1.5, a = 0.03, n = 0.01, q = 0.15, N =
5, b = 1.5) and by varying arrival rate (λ), service rate (µ), breakdown rate (α),
threshold value (N) and repair rate (β) respectively for the following sets of arrival
rates:

Set 1. λ0 = λ1 = λ2 = λ3 = λ
Set 2. λ0 = λ, λ1 = 1.4λ, λ2 = 0.9λ, λ3 = 0.7λ
Set 3. λ0 = λ, λ1 = 1.2λ, λ2 = λ, λ3 = 0.8λ

Table 1. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (λ0,λ1)

(λ0,λ1) (0.2,0.2) (0.2,0.4) (0.2,0.6) (0.3,0.4) (0.5,0.4) (0.5,0.6)

N ∗ 46 44 41 48 59 57

Tc(N ∗) 1031.91 990 950 1120.72 1436.80 1401.21

Table 2. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (λ1,λ2)

(λ1,λ2) (0.1,0.2) (0.2,0.2) (0.3,0.2) (0.4,0.3) (0.4,0.5) (0.4,0.6)

N ∗ 48 46 45 44 44 44

Tc(N ∗) 1053.24 1031.90 1010.90 991.09 989.42 988.30

Table 3. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (λ2,λ3)

(λ2,λ3) (0.4,0.3) (0.6,0.3) (0.8,0.3) (0.2,0.6) (0.2,0.4) (0.2,0.3)

N ∗ 45 45 45 45 45 45

Tc(N ∗) 1010.91 1009.10 1007.30 1011.96 1012.23 1012.30

Table 4. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (λ1,λ3)

(λ1,λ3) (0.3,0.2) (0.4,0.2) (0.5,0.2) (0.6,0.3) (0.6,0.5) (0.6,0.7)

N ∗ 45 44 43 42 42 42

Tc(N ∗) 1012.51 991.80 971.54 951.68 951.50 951.32
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Table 5. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (θ ,α)

(θ ,α) (0.5,0.05) (1.0,0.05) (1.5,0.05) (2.0,0.05) (2.0,0.2) (2.0,0.5)

N ∗ 39 34 34 40 40 40

Tc(N ∗) 993.43 967.65 967.13 924.75 929.47 936.61

Table 6. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (µ,β)

(µ,β) (0.8,3.0) (1.0,3.0) (1.2,3.0) (1.0,2.0) (1.0,4.0) (1.0,5.0)

N ∗ 23 26 27 26 26 26

Tc(N ∗) 1003.43 982.65 973.13 987.75 1064.41 1062.46

Table 7. The optimal threshold parameter N ∗ and corresponding
minimum expected cost for different sets (ϑ,β)

(ϑ,β) (0.3,1.0) (0.3,2.0) (0.3,3.0) (0.4,2.5) (0.5,2.5) (0.6,2.5)

N ∗ 28 32 39 36 36 37

Tc(N ∗) 657.11 766.61 783.42 871.20 870.65 870.89

In Figure 1(a) as we increase the threshold level, the queue length increases
linearly. Figure 1(b) shows the gradually increment initially and then after there
is a sharp increment in E(N) as arrival rate increases. In Figure 1(c) we exhibit
the graphs for E(N) and notice that it increases with the increase in α. Figure 1(d)
displays that as we increase µ, we see that initially average queue length decreases
sharply and then becoming almost constant.

7. Conclusion

In this paper, we have developed steady state performance indices for N-policy
M/M/1 queueing system with server breakdowns, vacations and setup time.
We have derived the distribution of system size and employed the probability
generating function technique to obtain mean queue length. Many existing
queueing models are deduced as special cases of our queueing model. Our
queueing model accommodates the real world congestion situations more closely
in comparison to other similar studies done previously. Sensitivity analysis
performed to examine the effect on the average queue length and cost function
of different parameters, may be helpful to decision makers and system designers
for the choice of optimal control policy.
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(a) Expected queue length vs. N (b) Expected queue length vs. λ

(c) Expected queue length vs. α (d) Expected queue length vs. µ

Figure 1
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