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A Parametric Statistics as A Supporting Tool
to the Social Sciences

John E. Goulionis and Dimitrios I. Stengos

Abstract. Partially Observable Markov Decision Processes (POMDPs) have recently
been suggested as a suitable model to formalizing the planning of educational
management. In this paper, we discuss a specialization of POMDPs that is
tailored to a frequently re-occurring type of educational management problem.
Furthermore under some reasonable conditions it is shown that there exists an
optimal policy in the class of control limit policies and we develop a solution
procedure utilizing these properties of the specialized form.

1. Introduction

A Partially Observable Markov Decision Process (POMDP) is a general sequential
decision-making model, where the effects of actions are nondeterministic and only
partial information about world states is available. The average cost criterion is a
popular criterion for optimization of stochastic dynamical systems over an infinite
time horizon. On the theoretical side Blackwell [3] considered the discounted cost
(DC) criterion in great details. The relation between the discounted and average
case becomes apparent via Tauberian theorems, see Arapostathis [1].

Cavazos-Cadena [5], showed that the existence of bounded solutions to
the average cost optimality equation (ACOE) necessarily impose a very strong
recurrence structure on the model. Recently POMDPs have been suggested as
providing a suitable, integrated approach to this type of educational management
problems see Sondik [17] and Goulionis [6]. Unfortunately, the computational
burden associated with solving POMDPs is overwhelming, recluding their
application to problems of practical size Papadimitriou [14].

However,for many specialized problems, the full-blown generality of the
POMDP approach and its associated solution methods is superfluous. As our
educational systems increases in size and complexity, and as they become
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increasingly dependent upon the devices and techniques of the new educational
technology, a systematic quantitative approach to the design and operation of these
educational systems is a vital necessity. For this reason we begin the process for
the simple yet very important system composed of a class of students.

In this paper, we apply partially observable Markov decision processes to an
educational system with two available actions (educational-methods). The first
method is cheap, and the second method is luxurious supported with computers
and presentations and we have partially observed case. Our results were presented
by means of a simple problem, but the main ideas can be readily put to use in
many applications.

The paper is organized as follows. In section 2, the model is described in detail.
In section 3 an optimal replacement problem is formulated as POMDP and

we determine the structural properties of optimal policies for the average cost
criterion. In section 4 we illustrate these results in the context of machine
replacement problem with two states.

2. Model Description and Assumptions

In the modeling of physical systems the concept of the state of the physical
system has proved to be a very valuable tool for the characterization of system
performance Sondik [17], Goulionis [5], [7]. This idea may also be an important
aid to the description of the learning process.

Thus in the class of the students the internal state of a class is measured
of the internal state of the students that constitute the class. We shall use the
internal state of a student as a representation of his learning characteristics. The
internal state of a student depends on different factors, as hereditary roots, familial
and social environments, personal model of thinking, preexisted knowledge,
sentimental reasons and generally psychological factors. Therefore, the internal
state of a class depends on many factors and for this reason is unknown. However
we can take a sense of this internal state by some observations, for example (score
in a test, participation in the learning process, the language of a body etc) see
Goulionis [8].

In this section we briefly describe the partially observable Markov decision
processes (POMDPs) model decision theoretic planning problems in which an agent
must take a sequence of decisions to minimize its utility given uncertainty in the
effects of its actions and its current state.

A POMDP model is a tuple (X , D, P, R,Θ,β). The partially observable Markov
decision process consists of a core process, an observation process and a decision
process. X is a finite set of stochastic variables. In this paper we have two states
X = {1, 2}. Let {x t , t = 0, 1, . . .} denotes the state of the class at time t. x t takes
values in X ≡ {1, 2} ≡ {good, bad}. The state of the class is only partially observed
and we have two actions (educational-methods) available in order to control
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the situation of the class. The first method is cheap, and the second method is
luxurious supported with computers and presentations. These methods are coded
in 0, 1 respectively; the set of actions at each time are D ≡ {0, 1}. We denote by
{ut , t = 0, 1, 2, . . .} the control process. The value of ut denotes the decisions taken
at time t. The teacher is unable to observe the state of the class directly and must
make his/her decisions sequentially based upon partial information time. State
transitions occur according to a Markov Chain whose transition probabilities are
determined by the choice of the material to be presented to the class. To accomplish
the effect of the teaching method upon the internal state knowledge of a class by
transitions from one state to another state, we have a transition probability matrix.
The state process evolves according to the transition probabilities Px t x t+1

(ut) define
by

pi j(a) = P{x t+1 = j|x t = i, ut = a}, where i, j = 1, 2, a ∈ D, t = 0, 1, . . . .

The transition probability matrices P(ut), ut ∈ D, with entries Px t x t+1
(ut), are given

by:

P(0) =
�

p11 p12
p21 p22

�
, P(1) =

�
1 0
1 0

�
. (2.1)

The observation process is related to the state and the control processes by means
of the conditional probabilities rx t , yt+1

(ut) defined by

riθ (a) = P{yt+1 = θ |x t = i, ut = a}, i = 1, 2

with rx t ,yt+1
(ut) the entries of the observation matrices R(ut), ut ∈ D, given by:

R(0) =
�

r11 r12
r21 r22

�
, R(1) =

�
1 0
0 1

�
, (2.2)

where r11, r12 ∈ [0.5, 1.0] is the probability of making a correct observation.
The signals for our model represent outcomes of the tests. For simplicity

we consider two types of observations are coded in 1, 2. We consider that the
observation of type 1 (θ = 1), is favorable for the state 1 (good state of a class),
while the observation of type 2 (θ = 2),is favorable for the state 2, (bad state of a
class). For example we consider that we have an observation of type 1 (θ = 1), if
we have success in the test over 60%. Thus the sets of signals is Θ = {1, 2}. Since
the true state of the class is not know, all the relevant information for selecting
the control action at time t is summarized by Bertsekas [2], [3] the conditional
probability distribution (also referred to as the information vector or the sufficient
statistic)

π(t) = (π1(t),π2(t)) = (1− p(t), p(t)) , (2.3)
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where p(t) is the probability that the class is in the bad state at time t given
past observations and actions, 0 ≤ p(t) ≤ 1. However, to do this we first need
to supply priors on all hidden variables at time t = 0. We note that the current
prior can be replaced by a more flexible model that targets different classes of
students and exploits other context information. There are logistic regression
models developed for this purpose [1]. In this paper the initial probabilities
π(0) = (P{x0 = 1}, P{x0 = 2}) are assumed given. That is, p(t) is defined as:

p(t) = P{x t = 2|yt , . . . , y1, ut−1, . . . , u0}, t = 1, 2, . . .

p(0)≡ π2(0).

Initial belief state. When the model of the dynamics has been defined, we can
expand it as many time steps as needed and use it to compute belief updates.
However, to do this we first need to supply priors on all hidden variables at time
t = 0. There are logistic regression models developed for this purpose Goulionis
[7]. We will often denote π(t) and p(t) by π and p respectively, omitting explicit
dependence on t. We set C a ≡ (c(1, a), c(2, a)), a ∈ D, where c(i,α) is the scalar
valued cost accrued, when the current state is i ∈ S and action is ut = α ∈ D,
t = 0, 1, 2, . . ..

In this model we assume that c(1, 0) = c1, c(2, 0) = c2, c(1, 1) = c(2, 1) = R,
where c1 < c2 < R.

The objective is to find, an optimal policy among the admissible policies, such
that it minimizes a given performance index, typically the expected discounted
cost or the expected long-run average cost. These costs are defined in terms of the
state x t by:

Discounted-cost (DC).

Jβ (δ,π(0)) := lim
n→∞

Eδπ(0)

� n∑

t=0

C(x t , ut)
�

, 0< β < 1 . (2.4)

Average-cost (AC).

J(δ,π(0)) := lim
n→∞

sup
1

n
Eδπ(0)

� n−1∑

t=0

C(x t , ut)
�

(2.5)

respectively, and in terms of the information vector π(t) by:

Jβ (δ,π(0)) := lim
n→∞

Eδπ(0)

� n∑

t=0

β tπ(t)Cut

�
, (2.6)

and

J(δ,π(0)) := lim
n→∞

sup
1

n
Eδπ(0)

� n−1∑

t=0

π(t)Cut

�
. (2.7)
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The equivalence, in the sense of equal optimal costs for each π(0) ∈ Π, of the
optimization problems defined using criteria (2.4) and (2.5), and similarly for
problems specified using (2.6) and (2.7), is shown in Sawaragi [14].

Since the state of the machine is not known at time t, we will work with Jβ(δ, ·)
and J(δ, ·). We define

J(π)≡ inf
δ

Jβ(δ,π).

Then, Vβ(π)is the total expected discounted cost accrued when an optimal
policy is selected, given that the initial information vector is π, and future costs
are discounted at rate β . It is well known Bertsekas [4] and Ross [13] that Vβ (π)
is the unique solution of:

Vβ(π) =min
a

�
πC a + β

∑

θ

{θ/π,α}Vβ(π/θ ,α)
�

, (2.8)

{θ/π, a}= π PaRa
θ e, (2.9)

where {θ/π, a} = π PaRa
θ e is the probability that the next observation will be θ ,

given the probability distribution, π and action a, with e ≡ (1, 1)′ and Ra
θ the 2×2

diagonal matrix with entries riθ (a), i = 1, 2. T (π,θ , a) is the updated conditional
probability given observation θ , action a and prior distribution π, and using Bayes’
rule it is given by

T (π,θ , a) =
π PaRa

θ

{θ ,π, a} . (2.10)

When computing optimal policies in the infinite horizon case, we need only
consider stationary policies see Bertsekas [4]. A stationary policy is denoted by
(δ)∞ = (δ,δ, · · · ). Similarly, define:

Optimal-average cost.

g ≡ J(π)≡ inf
δ

J(δ,π), π ∈ Π.

Then, g is the expected optimal average cost, and it satisfies the functional
equation:

g + h(π) =min
a

�
πCα +

∑

θ

{θ/π,α}h(T (π,θ ,α))
�
∀ π ∈ Π. (ACOE) (2.11)

(Conditions for the existence of a constant g and measurable map h, satisfying the
average cost optimality equation (2.10) for the problem considered here, are given
in Fernandez [1]). The key points are:

(i) the observation and control spaces, Θ and A respectively, are finite; and
(ii) the costs C(x(t), a(t)), x(t) ∈ X , a(t) ∈ A, t = 0, 1, 2, . . . , are uniformly

bounded.
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3. Optimal-replacement Problem (Average-cost)

The average cost criterion (equivalently, the long-run average cost) is a popular
criterion for optimization of stochastic dynamical systems over an infinitive time
horizon. We wish to determine the structural properties of optimal policies for the
average cost criterion.

Theorem 3.1. If there exists a real bounded function h, h : Π→ R and a constant g,
such that:

g + h(π) =min
a

�
πCα +

∑

θ

{θ/π,α}h(T (π,θ ,α))
�

, ∀ π ∈ Π. (ACOE)

Then, it can be shown that g is the optimal average cost, and that any stationary
policy δ∗ attaining the minimum above is average cost optimal.

g = J(δ∗,π) = J(π), ∀ π ∈ Π . (by Ross [13])

Let now, π,π∗ ∈ Π and hβ(π) := Vβ(π)−Vβ(π∗), gβ = (1−β). Vβ(π∗) ∀ π ∈ Π,
(0≤ β < 1), then the average cost optimality equation (ACOE) takes the following
form:

gβ + hβ(π) =min
a

�
πqα +

∑

θ

{θ/π,α}hβ (T (π,θ ,α))
�
∀ π ∈ Π.

It can be shown, Fernandez [1] that a necessary condition for the existence of
a bounded solution to the (ACOE) is that the following boundedness condition
holds.

Uniform-boundedness. There is a constant k � 0 such that:

|Vβ(π)− Vβ(π
∗)| ≤ k ∀ β , (0≤ β < 1) and ∀ π,π∗ ∈ Π

Let π0 ∈ Π. We consider the set:

S(π0) =
∞⋃

t=0

St(π0) ,

S0(π0) = (π0) ,

St(π0) = {T (π,θ ,α) : π ∈ St−1(π0),θ ∈ M , a ∈ A}, t ≥ 1.

S(π0) is countable set, since the countable union of countable sets is itself
countable.

Theorem 3.2. If there exists a constant 0< k <∞ such that:

hβ (π)≡ |Vβ(π)− Vβ(π
∗)| ≤ k ∀ π ∈ S(π0) (0≺ β < 1) (Uniform-boundeness)

then:
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(i) there exist, a bounded function h(π) with π ∈ S(π0), a constant gπ0
, and some

sequence {βn}, βn ∈ (0, 1), βn→ 1 (n→∞) such that:

hβn(π)→ h(π) ∀ π ∈ S(π0) and (n→∞)

gβn→ gπ0
(n→∞)

(ii) The constant gπ0
, and function h(π) satisfy the average cost optimality

equation.

gπ0
+ h(π) =min

a

�
πqα +

∑

θ

{θ/π,α}h(T (π,θ ,α))
�
∀ π ∈ S(π0).

(iii) gπ0
= J(π) ∀ π ∈ S(π0).

(iv) gπ0
= J(π). From Theorem 3.1.

Proof. Fernandez [1]. ¤

Theorem 3.3. Under the assumption that hβ(π) ≡ |Vβ (π) − Vβ(π∗)| ≤ k, ∀
π ∈ S(π0) (0 ≺ β < 1) (Uniform-boundedness), then there exist a bounded function
h(π) with π ∈ Π and a constant g, such that:

g + h(π) =min
a

�
πC0 +

∑

θ

{θ/π}h(T (π,θ)),πC1
�

, (3.1)

because h(e1) = 0 and g = J(π), ∀ π ∈ Π.

Proof. We consider the set

S0(π) = {π} ,

St(π) = {T (π,θ ) : π ∈ St−1(π),θ ∈ M} ∪ {e1}, t ≥ 1 ,

S(π) =
∞⋃

t=0

St(π),

is countable set, since the countable union of countable sets is itself countable.
From theorems (3.2), (3.3) there exists, a bounded function h(π) with π ∈ Π, and
a constant g, such that:

g + h(π) =min
a

�
πC0 +

∑

θ

{θ/π}h(T (π,θ)),πC1
�

.

It is valid that: S(e1) ⊆ S(π) ∀ π ∈ Π, and therefore gπ = J(e1), ∀ π ∈ Π, hence
gπ independent of π. ¤

Proposition 3.4. If a function hβ(p) is uniformly bounded. Then for a fixed p ∈
[0, 1], it is average-cost-optimal to take action “α” at p, denoted as δ∗(p) = α, if
there is a sequence {βn} ⊆ (0, 1), with βn ↑ 1, such that it is βn-discount optimal to
take action “α” at p, denoted as δ∗βn

(p) = α.

Proof. Fernandez [1]. ¤
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4. The Two-state Replacement Problem

We wish to determine the structural properties of optimal policies for the
average cost criterion by examining (3.1). We restrict the state space of the core
process and the observation process to a two state case (1-good state and 2-bad
state). Hence we can write π = (1 − p, p). Here, p, is interpreted as a priori
probability of the system being failed. At each time period, the state of the system
is monitored incompletely by some monitoring mechanism. The outcome of the
monitoring is classified into finite levels Θ= {1, 2}.

T (p,θ) ≡ T2(π,θ) is a posteriori conditional probability of the core state being
in the bad state, given decision θ = 0 was made, observation θ obtained, and an
a priori probability, p, of the system being failed. It follows from (2.9) and (2.10)
that:

T (p,θ) =
aθ + βθ p

γθ +δθ p
, 0≤ p ≤ 1, θ = 1, 2, (4.1)

{θ/p}= γθ +δθ p, 0≤ p ≤ 1, θ = 1, 2, (4.2)

αθ = p12r2θ > 0, ββ = (p22 − p12)r2θ , γθ = p11r1θ + p12r2θ > 0 and

αθ = p21r1θ + p22r2θ − p11r1θ − p12r2θ =−|P|r1θ + |P|r2θ , θ = 1, 2 . (4.3)

The next lemma collects some of the properties of the maps T (p, 1), T (p, 2),
0≤ p ≤ 1.

Lemma 4.1. Let 0≤ p ≤ 1, r11, r22 ∈ (0.5, 1), the following holds:

(i) The functions T (p, 1), T (p, 2), are monotone nondecreasing for each p ∈ (0, 1).

(ii) The function T (p, 1), 0 ≤ p ≤ 1 is convex and the function T (p, 2), 0 ≤ p ≤ 1
is concave.

(iii) T (p, 1)≺ T (p, 2), 0≤ p ≤ 1

(iv) T (1,θ)≺ 1 (θ = 1, 2)

(v) The function T (p, 1) has single fixed point ξ1 ∈ (0, 1), T (ξ1, 1) = ξ1 and
p ≺ T (p, 1)≺ ξ1 ∀ p ∈ [0,ξ1) and ξ1 ≺ T (p, 1)≺ p ∀ p ∈ (ξ1, 1].

(vi) The function T (p, 2) has single fixed point ξ2 ∈ (0, 1), T (ξ2, 1) = ξ2 and
p ≺ T (p, 2)≺ ξ2 ∀ p ∈ [0,ξ2) and ξ2 ≺ T (p, 2)≺ p ∀ p ∈ (ξ2, 1].

(vii) ξ1 ≺ ξ2.

Proof. The properties of the maps T (p, 1), T (p, 2) follow by simple algebraic
operations on the expressions for the given quantities. ¤

Now, concerning the quantities defined above, the following assumptions are
made.
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(A-1) The 2 × 2 transition probability matrix P is totally positive of order
2 (T P2),that is,
�

p11 p12
p21 p22

�
≥ 0 .

(A-2) The 2× 2 probability matrix R is totally positive of order 2 (T P2), that is,
�

r11 r12
r21 r22

�
≥ 0.

(A-3) p12 � 0.
(A-4) c1 ≺ c2 ≺ R.

Now, let Vβ(π) denote the optimal expected total discounted cost over an infinite
horizon with an initial state π. Then Vβ(π) satisfies the following recursion:

Vβ (π) =min
�
πC0 + β

∑

θ

{θ/π}Vβ(T (π,θ)),πC1 + β Vβ(e1)
�

for π ∈ R2, π= (1− p, p)

or

Vβ (p) =min
�

c1 + c p+ β
2∑

θ=1

{θ/p}Vβ (T (p,θ)), R+ Vβ(0)
�

,

where c = c2 − c1 (� 0).

Theorem 4.2. The function hβ (π)≡ |Vβ(π)− Vβ(e1)| is uniformly bounded.

Proof.

Vβ(π) =min




πC0 + β

∑
θ∈Θ
{θ |π}Vβ(T (π,θ))

πC1 + βVβ(e1)
for π ∈ R2, e1 = (1, 0) .

For π ∈ R2, π= (1−π2,π2), e1 = (1, 0), where (0≤ β < 1), we have:

Vβ (π)≤ πC1 + β . Vβ(e1)≤ R+ Vβ(e1).

Therefore:

0≺ Vβ(π)− Vβ(e1)≺ R,

and the function hβ(π)≡ |Vβ(π)− Vβ(e1)| is uniformly bounded. ¤

Proposition 4.3. (i) The optimal β-discounted cost function Vβ(p), 0 ≤ p ≤ 1 is
concave and nondecreasing.

(ii) 0≺ Vβ(p)≤
R

1− β , 0≤ p ≤ 1.
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Proof. (i) The function Vβ(π), π ∈ Π is increasing and concave; see Astrom [2].

(ii) V(p) =min
�

c1 + c p+ β
2∑

θ=1

{θ/p}Vβ (T (p,θ)), R+ β Vβ(0)
�

, 0≤ p ≤ 1

(4.4)

From above optimality equation

Vβ (p)≤ R+ βVβ(0), 0≤ p ≤ 1 .

For p = 0 we take Vβ(0)≤ R+ βVβ (0).

Hence, Vβ (0)≤
R

1− β .

Therefore,

Vβ (p)≤ R+ β
R

1− β =
R

1− β , 0≤ p ≤ 1 . (4.5)

¤
Define Wβ (p), 0 ≤ p ≤ 1, the expected discounted cost to be accrued using the

policy δ(p) = 0, 0≤ p ≤ 1.

Wβ(p) = c1 + p c + β
∑

θ

{θ/p}Wβ (T (p,θ)), 0≤ p ≤ 1, (4.6)

where c = c2 − c1 (� 0).
For finding Wβ we consider the functions Wn(p), n = 0, 1, 2, 3 . . . , 0 ≤ p ≤ 1

defined inductively as:

W0(p) = 0, 0≤ p ≤ 1

Wn(p) = c1 + p c + β
2∑

θ=1

{θ/p}Wn−1(T (p,θ)), 0≤ p ≤ 1. (4.7)

Lemma 4.4.

Wn(p) = (An p+ Bn) c+
1− βn

1− β c1 , n= 0, 1, 2, . . . , (4.8)

where

An = 1+ β |P|An−1, Bn = B(p12 An−1 + Bn−1), n= 1, 2, . . .

A0 = B0 = 0.

Proof. An induction argument shows that, W1(p) = c1 + p c = c1 + (A1 p + B1) c,
A1 = 1, B1 = 0. We suppose that lemma is valid for some n ≥ 1. For 0 ≤ p ≤ 1 we
have:

Wn+1(p) =
�

c1 + p c + β
∑

θ

{θ/p}Wn(T (p,θ)
�
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= c1 + p c + β
∑

θ

{θ/p}
�
(An T (p,θ) + Bn) c+

1− βn

1− β c1

�

= c1 + p c + β
�

An

∑

θ

{θ/p}[T (p,θ ) + Bn) c+ β
1− βn

1− β c1

�

=
1− βn+1

1− β c1 + c p+ β
�

An

∑

θ

(αθ + βθ p) + Bn

�
c

=
1− βn+1

1− β c1 + c p+ β
�
(An((a1 + a2) + (β1 + β2)p) + Bn)

�
c,

where

α1 +α2 = p12 (r21 + r22) = p12 ,

β1 + β2 = |P| (r21 + r22) = |P| .
Hence,

Wn+1(p) =
1− βn+1

1− β c1 + c p+ β [(An(p12 + |P| p) + Bn)] c

=
1− βn+1

1− β c1 + (1+ β |P|An) c p+ β (p12 An + Bn) c

=
1− βn+1

1− β c1 + (An+1 p+ Bn+1) c .

Therefore the lemma is valid for n+ 1. ¤

The following result gives an explicit solution for Wβ .

Proposition 4.5. The function Wβ(p), 0≤ p ≤ 1

Wβ(p) =
1

1− β c1 +
(1− β) p+ β p12

(1− β)(1− β |P|) c , 0≤ p ≤ 1.

Proof. Note Wn→Wβ when n→∞.
Where,

W0(p) = 0, 0≤ p ≤ 1 ,

Wn(p) = c1 + p c + β
2∑

θ=1

{θ/p}Wn−1(T (p,θ)), 0≤ p ≤ 1 ,

Wβ(p) = (Ap+ B) c +
1

1− β c1, 0≤ p ≤ 1

follows from Lemma 4.4.
Where,

A= lim
n→∞

An , B = lim
n→∞

Bn.
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Limiting arguments produce the result,

A= 1+ β |P|A,

B = β(p12 A+ B).

Hence,

A=
1

1− β |P| , B =
β p12

(1− β)(1− β |P|)
and finally

Wβ(p) =
1

1− β c1 +
(1− β) p+ β p12

(1− β)(1− β |P|) c, 0≤ p ≤ 1 . (4.9)

¤

Proposition 4.6. The strategy δ∞with control function δ(p) = 0, 0 ≤ p ≤ 1 is
β-optimal if and only if:

c1 +
1+ β p12

1− β |P| c ≤ R. (4.10)

Proof. The function Wβ is β-optimal if and only if:

Wβ(p)≤ R+ βWβ (0), 0≤ p ≤ 1 . (4.11)

Then by proposition (4.5) it follows that:

Wβ(p) =
1

1− β c1 +
(1− β) p+ β p12

(1− β)(1− β |P|) c .

Thus we obtain that (4.11) it is valid if and only if:

c1 +
p+ β p12

1− β |P| c ≤ R, 0≤ p ≤ 1 . (4.12)

But the above (4.12) it is valid if and only if (4.10) is valid. Therefore we conclude
that the function Wβ is β-optimal if and only if it is valid (4.10). Then the strategy
δ(p) = 0, 0≤ p ≤ 1 is β-optimal, if and only if it is valid (4.10). ¤

Proposition 4.7. The strategy δ∞with control function δ(p) = 0, 0 ≤ p ≤ 1 is
β-optimal ∀ β ∈ (0, 1) if and only if:

c1 +
1+ p12

1− |P| c ≤ R . (4.13)

Proof. The function f (β) :=
1+ β p12

1− β |P| c, 0≺ β ≺ 1 is monotone increasing and

lim
β→1−

f (β) =
1+ p12

1− |P| c .

Note that |P|= p22 − p12 ≺ 1, because p12 � 0 (Assumption A-3)).
Therefore the condition (4.13) follows from Proposition 4.6 with (β = 1). ¤
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Then by Theorems 3.4 and 4.2 it follows, that there exist, a bounded function
h(p), 0≤ p ≤ 1 and a constant g such that,

g + h(p) =min
a

�
c1 + c p+

∑

θ

{θ/p}h(T (p,θ)), R
�

, 0≤ p ≤ 1 , (4.14)

h(0) = 0 ,

g = lim
β→1−

(1− β)Vβ(0) . (4.15)

The following proposition provides necessary and sufficient condition, such that
the strategy “not replace the system” to be average cost AC-optimal.

Proposition 4.8. The strategy δ∞ with control function δ(p) = 0, 0 ≤ p ≤ 1 is
average cost (AC) optimal if and only if:

c1 +
1+ p12

1− |P| c ≤ R (4.16)

and then the average cost accrued by this policy is

g = c1 +
p12

1− |P| c .

Proof. Suppose that (4.12) holds. Then by proposition (4.7) the strategy δ∞ with
β(p) = 0, 0≤ p ≤ 1 is β-optimal for each β ∈ (0, 1) and

Vβ (p) =Wβ(p), 0≤ p ≤ 1 . (4.17)

We have from (4.9), (4.15) and (4.17) by simple algebraic operations,

g = lim
β→1−

(1− β)Vβ(0)

= lim
β→1−

(1− β)Wβ (0)

= lim
β→1−

�
c1 +

β p12

1− β |P| c
�

= c1 +
p12

1− |P| c . (4.18)

Also for each β ∈ (0, 1) we have:

hβ(p) = Vβ(p)− Vβ(0)

=Wβ (p)−Wβ(0)

=
c

1− β |P| p, 0≤ p ≤ 1 .

For β → 1− we take:

h(p) := lim
β→1−

hβ (p) =
c

1− |P| p , 0≤ p ≤ 1 .
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Now we prove that g and h(p), 0≤ p ≤ 1 satisfy the optimization equation (4.14).
We have

c1 + c p+
∑

θ

{θ/p}h(T (p,θ))

= c1 + c p+
c

1− |P|
∑

θ

{θ/p} T (p,θ ))

= c1 + c p+
c

1− |P|
∑

θ

(αθ + βθ p)

= c1 + c p+
c

1− |P| (a1 + a2 + (β1 + β2) p)

= c1 + c p+
c

1− |P| (p12 + |P| p)

= c1 +
c

1− |P| (p12 + p) = g + h(p) . (4.19)

From condition (4.12) we obtain:

c1 +
c

1− |P| (p12 + p)≤ R, 0≤ p ≤ 1 . (4.20)

From (4.19) and (4.20) we have that the constant g and the function h(p),
0 ≤ p ≤ 1 satisfy the optimization equation (4.14). Also the strategy δ∞ is AC-
optimal because for each 0 ≤ p ≤ 1 the action δ(p) = 0, 0 ≤ p ≤ 1 minimizes the
second part of (4.14).

Inversely, we suppose that δ∞ with δ(p) = 0, 0 ≤ p ≤ 1 is AC-optimal. Then in
combination with optimization equation (4.14) we obtain:

g + h(p) = c1 + c p+
∑

θ

{θ/p}h(T (p,θ)}, 0≤ p ≤ 1 .

It is valid (see (4.19)) when:

g = c1 +
c

1− |P| p12, h(p) =
c

1− |P| p, 0≤ p ≤ 1 .

Also we have

c1 + c2

∑

θ

{θ/p}h(T (p,θ)}= c1 +
c

1− |P| (p12 + p)≤ R, 0≤ p ≤ 1 .

This is obvious from condition (4.16). ¤

Let now consider the strategy δ∞ where δ(p) = 0 if p = 0 and δ(p) = 1 if p 6= 0.
Then, for any initial state p, 0≤ p ≤ 1, the process will be at p′ = 0, t = 1, 3, 5, . . . ,

hence the average cost to be accrued using this policy is g =
c1 + R

2
. We prove that

above policy is not (AC) optimal.



A Parametric Statistics as A Supporting Tool to the Social Sciences 135

Proposition 4.9. The strategy δ∞ (stationary)

δ(p) =

¨
0 (continue) if p = 0

1 (replace) if 0≺ p ≤ 0

is not (AC) optimal.

Proof. We prove that optimization equation (4.14) is satisfied for

g =
c1 + R

2
, h(p) =

R− c1

2
, 0≤ p ≤ 1, h(0) = 0

and the strategy δ∞ is AC-optimal if and only if

R= c1 . (4.21)

Actually, we have

g + h(p) =
c1 + R

2
+

R− c1

2
= R, 0≤ p ≤ 1 ,

g + h(0) = g =
c1 + R

2
,

c1 + c p+
∑

θ

{θ/p}h(T (p,θ))

= c1 + c p+
R− c1

2

∑

θ

{θ/p}

= c1 + c p+
R− c1

2

=
c1 + R

2
+ c p, 0≤ p ≤ 1 .

Notice that if p = 0,

c1 + c 0+
∑

θ

{θ/0}h(T(0,θ)) =
c1 + R

2
= g + h(0).

Therefore the optimization equation (4.14) is valid for p = 0 if and only if:

g + h(0) =
c1 + R

2
≤ R . (4.22)

If p 6= 0 the optimization equation (4.14) is valid for p = 0 if and only if

g + h(p) = R≤ c1 + c p+
∑

θ

{θ/p}h(T (p,θ)), 0≤ p ≤ 1 .

Therefore,

R≤ c1 + R

2
+ c p, 0≤ p ≤ 1 . (4.23)

But (4.23) is equivalent to

R≤ c1 + R

2
. (4.24)
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From (4.22) and (4.24) implies that the optimization equation (4.14) is satisfied
if and only if:

c1 + R

2
= R .

Therefore, R = c1. Because c1 ≺ c2 ≺ R the condition (4.21) is not valid and
therefore the above strategy δ∞ is not average cost optimal. ¤

Proposition 4.10. If

(c2 ≺)R≺ c1 +
c

1− |P| (p12 + 1) (4.25)

then the stationary strategy

δ(p) =

¨
0 (continue) if 0≤ p ≺ p∗

1 (replace) if p∗ ≺ p ≤ 1 ,

is average cost (AC) optimal, where p∗ ∈ (0, 1) is a critical point.

Proof. From Proposition 4.6 implies for each β ∈ (0, 1) the critical point of β-
optimal strategy p0(β) ∈ (0, 1) if and only if

R≺ c1 +
c

1− β |P| (β p12 + 1) .

Because the function f (β) :=
1+ β p12

1− β |P| c, 0≺ β ≺ 1 is monotone increasing and

lim
β→1−

f (β) =
1+ p12

1− |P| c,

from (4.25) implies that exists 0≺ ε ≺ 1 such that:

R≺ c1 +
c

1− β |P| (β p12 + 1) ∀ β ∈ (1− ε, 1) .

Therefore,

0≺ p0(β)≺ 1 ∀ β ∈ (1− ε, 1)

Let {βn} ⊆ (1−ε, 1) be such that, lim
n→∞

βn = 1. Then 0≺ p0(βn)≺ 1, ∀ n= 1, 2, . . . .

By the Bolzano-Weierstrass theorem there is a subsequence {βnk
} such that:

p0(βnk
)→ p∗, k→∞ and p∗ ∈ [0, 1].

If p∗ � 0, then for p ∈ [0, p∗) fixed there exists an τ ∈ N such that:

p ≺ p0(βnk
), ∀ k ≥ τ.

Thus it is βnk
-optimal to produce at p, for all k ≥ τ; hence it is (AC)-optimal to

produce at p, by Proposition 3.5. Since 0 ≤ p ≤ p∗ was arbitrary it is therefore
(AC)-optimal to produce for p ∈ [0, p∗). On the other hand, if p∗ ≺ 1, it is similarly
shown that it is (AC)-optimal to replace for p ∈ (p∗, 1]. We claim that 0 ≤ p∗ ≤ 1.
We argue by contradiction: p∗ 6= 0, p∗ 6= 1. The fact that p∗ 6= 0, is easily implies
by Proposition 4.9. We consider now p∗ = 1. Then for each p ∈ [0, 1) the decision
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δ(p) = 0 is (AC)-optimal. This is not valid by Proposition 4.8 and condition (4.25).
Therefore p∗ 6= 1. Hence, 0≺ p∗ ≺ 1. ¤

5. Optimization Procedure

Recall that ∆(π) is defined in Eq. (5.1) as:

∆(π) = g + V (π/δ)−
��
πqδ1 +

∑

θ

{θ/π,δ1}V[T (π/θ ,δ1)/δ
��

, (5.1)

where policy δ∞ is being improved. If the optimal gain is defined as g∗ then it can
be shown that:

min
π
∆(π)≤ gδ − g∗ ≤max

π
∆(π) . (5.2)

The result is analogous to the completely observable result discussed by Howard
[15]. With, the bound on the distance from the optimal gain in Eq. (5.2), the policy
iteration algorithm is complete.

Policy-Iteration with β = 1

Initial step: Pick an arbitrary policy, say δ(π) = α, ∀ π.

Step 1. Choose the degree of the partition k to satisfy error requirements, and find
the partition V k. k indicates the number of times that the inverse mapping,
T−1,will be applied to the points of discontinuity of δ in order to obtain the
partition for the piecewise-linear function V . There is some finite number
k′ after which this algorithm cannot create new boundaries, because as we
proved the policy is finitely transient.

Step 2. Construct the mapping v( j,θ) from V k, where V k = {V1, V2, . . . Vp}. That
means we take some π= (1−π2,π2) ∈ Vj , j = 1, 2, . . . , p, and finding

T2(π2,θ = 2) =
r22[π2(1− p21 − p12) + p12]

(r11 + r22 − 1)[π2(1− p21p12) + p12 + 1− r11]
and

T2(π2,θ = 1) =
a1 + β1π2

γ1 +δ1π2

=
π2 [(1− r22) (1− p21 − p12)] + p12 (1− r22)�

π2(r11 + r22 − 1) (p21 + p12 − 1)
+ r11(1− p12) + p12 (1− r22)

� .

For example if π ∈ V2, T2(π2,θ = 2) ∈ V4⇒ v(2, 2) = 4.
Step 3. Calculate γδ and gδ from

gδ1+ γδ = Pδ γδ + q . (5.3)

With the construction of v, the matrix Pδ of finite state controller and γδ
are well defined. Thus the equation (5.3) can be solved for γδ and gδ by
fixing one value γδ for each chain represented in Pδ.
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Step 4. Policy-improvement. Find the policy δ1(π), where δ1(π) minimizes
�
πqα +

∑

θ

{θ/π, a}V[T (π/θ ,δ)/δ]
�

(5.4)

over α, and where V (π/δ) = πγν(π).
Step 5. Evaluate gδ − g∗ from ∆(π), where

∆(π) = [gδ +πγν(π)]−
��
πqδ1(π) +

∑

θ

{θ/π,δ1}V[T (π/θ ,δ1)/δ
��

(5.5)

and

min
π
∆(π)≤ gδ − g∗ ≤max

π
∆A(π) . (5.6)

Step 6. If |g − g∗| ≺ ε then stop; the optimal policy (within ε) is δ, otherwise,
return to step 1 with δ replaced by δ1.

The mechanics of this step are essentially the same for both the discounted
and undiscounted problems. The max and min of ∆(π) are the upper and lower
bounds of |g − g∗|. Regardless of whether V (π/δ) or V (π/δ) =min

j
[πγ j] is used

to calculate ∆(π) in policy-improvement, ∆(π) will be piecewise linear (but not
necessarily continuous). Thus the maximum and minimum can occurs only at the
breakpoints. By noting this fact the bounds can be readily determined as ∆(π) is
computed.

6. Conclusions

This paper has discussed an optimal replacement problem of a discrete-time
Markovian deterioration system with an incomplete monitoring mechanism.The
objectives of this research are:

(a) to develop sufficient conditions which a control-limit policy,
(b) to investigate the structural properties for the two-state POMDP.

In this paper, it was assumed that the transition probability of the deteriorating
process of the system and the probabilistic relation between the system and the
monitoring mechanism are completely known.
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