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Abstract. The motion of a celestial body under the influence of a central force is considered.
The influence of other bodies on the gravitational attraction force of the two-body problem is modeled
as fluctuating force perturbations about a mean value. The ordinary differential equation determining
the orbits is derived in polar coordinates. The exact analytical solution is given. Three cases, namely
the elliptic, parabolic and hyperbolic cases are investigated. The distortion of the orbits under
the influence of small perturbational forces are depicted. The equation determining the escape angle is
solved numerically by the Newton-Raphson method. Effects of fluctuation frequencies on the distortion
of orbits as well as escape angles are studied in detail. It is found that the force fluctuations may
alter the nature of the orbits and destroy their symmetries. When the fluctuation frequency is an
integer number, the orbits are distorted but the escape angles remain unaffected for the parabolic
case. For non-integer frequencies, the escape angles may decrease in magnitude.
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1. Introduction
Kepler is the first one to point out that planets are travelling on elliptic paths around the Sun
and changed the wrong belief that all celestial bodies are moving around the Earth in circular
paths. Newton later verified the axioms of Kepler by mathematical formulations. The problem
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of determining the orbits of celestial bodies reduces to the problem of a mass moving under
the influence of a central gravitational attraction force. The mechanical energy and angular
momentum are the conserved quantities for the problem. The analytical solutions reveal three
distinct cases for the orbits, namely the elliptic, parabolic and hyperbolic paths. While the
elliptic paths are stable, for the parabolic and hyperbolic paths, the mass escapes from the
influence of the main gravitational attracting body which itself is much larger than the rotating
mass around it. The limiting case is the parabolic path for which the escape angles are ∓π
radians and for the hyperbolic paths, they are lower than these values (Beer et al. [1], and
Meriam and Kraige [3]).

The two-body system is subject to influences from the other celestial bodies. For a planet
rotating around a star, a comet rotating around the planet may influence the orbits. Other
celestial bodies in the outer space of the orbital area may influence the main attractional forces
between the bodies as well. In this work, the small variations in the central gravitational
force due to external bodies are modelled by a fluctuating force about a mean value. The
governing equations of motion are expressed in polar coordinates and the differential equation
determining the orbits is derived. The exact solution of the equation is given. The unperturbed
orbits and the distortion of the orbits due to fluctuations are depicted in figures. Three different
cases, the elliptical, parabolic and hyperbolic paths are investigated in detail. It is shown that
the symmetry of the paths is spoiled due to the fluctuations in the gravitational forces. As a
result, one branch may express a stable path while the other may express an unstable path.
The effect of fluctuation frequencies on the escape angles are studied in detail. For originally
parabolic paths, the fluctuation frequency may stabilize one branch with no escape angles and
destabilizing the other path with lower escape angles. The elliptic paths with high eccentricity
may also be destabilized partially under the influence of fluctuations. The hyperbolic paths may
also alter their nature under the fluctuations. The escape angles are doomed to change under
the influence of the fluctuations.

Some of the relevant study on the subject is given: Solution of the Kepler problem was
given by taking the energy equation in a suitable two term square form and solving them
algebraically. An additional potential energy term is considered to explain the presession of
Mercury around Sun (Moriconi [4]). A perturbing central force on the elliptic Keplerian orbit
was considered by Davies [2] and applied to the explanation of perihelion presession of Mercury.
A quadratic nonlinear model including the relativistic effects on the precession of the orbit
of Mercury is treated by Pakdemirli [5] using the newly developed Multiple Scales Lindstedt
Poincare method. The commonly referred Kepler’s equation is a transcendental equation which
relates the dependence of position with time. For solution of the Kepler’s equation numerically
for nearly parabolic orbits, see, e.g., Rasheed [6], and Serafin [8]. To the best of the authors’
knowledge, the effect of gravitational force fluctuations on the orbits of celestial bodies was not
considered before which is addressed in this study for the first time.
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2. Equation of Motion and the Orbital Equation
The motion of a particle moving in an orbit under the influence of a central force only can be
more practically expressed in polar coordinates (Beer et al. [1], and Meriam and Kraige [3]),

−F = m(r̈− rθ̇2), (1)

0= m(rθ̈+2ṙθ̇), (2)

where the parentheses on the right-hand sides express the radial and tangential accelerations
in polar coordinates. The second equation can be integrated to yield

r2θ̇ = h, (3)

where h is the angular momentum per unit mass which is a constant of conserved quantity.
Expressing the first and second derivatives

ṙ =−h
d

dθ

(
1
r

)
, r̈ =−h2

r2
d2

dθ2

(
1
r

)
(4)

and substituting the latter into (1) yields the ordinary differential equation
d2u
dθ2 +u = F

mh2u2 (5)

with

u = 1
r

. (6)

One may now assume that the central force is a gravitational force with small fluctuations
about a mean value

F = GMm
r2 (1+αsinΩθ)=GMmu2(1+αsinΩθ), (7)

where α is the fluctuation amplitude (α≪ 1) and Ω is the fluctuation frequency. The fluctuations
may represent the influences of other external bodies (Comets rotating around the small
mass, external celestial objects outside the orbital area of the two masses, etc.). In view of (7),
equation (5) reduces to

d2u
dθ2 +u = GM

h2 (1+αsinΩθ). (8)

The initial conditions for the problem can be written as follows

u(0)= u0 = 1
r0

,
du
dθ

(0)= 0 (9)

with r0 being the initial distance between the center of masses. The exact solution of (8) subject
to the conditions (9) is

u = 1
r
= GM

h2

(
1+εcosθ+ α

1−Ω2 (sinΩθ−Ωsinθ)
)
. (10)

When the fluctuations are absent, i.e., α= 0, the solution reduces to the well-known solution of
conical orbits (Beer et al. [1], and Meriam and Kraige [3]),

u = 1
r
= GM

h2 (1+εcosθ). (11)

Note that

ε= h2

GMr0
−1 (12)
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is called the eccentricity of the orbit. For ε< 1, the orbit is elliptic, for ε= 1, it is parabolic and
for ε> 1, it is hyperbolic. Only the elliptic orbit is stable and the mass does not escape from
the gravitational attraction of the main body. The three cases will be investigated in the next
section with respect to distortions in the orbits and the escape angles if present.

3. Numerical Results
The orbits and the escape angles will be treated for all cases numerically in this section. The
dimensionless distance r is used in all graphics of orbits

r = GM
h2 r . (13)

3.1 Elliptic Orbits (ε< 1)
The eccentricity is less than one in this special case. The Earth’s orbit around Sun is almost
circular with ε= 0.0167 whereas for Mercury, the eccentricity is higher (ε= 0.2056) being more
elliptic (Saari [7]). For perfect circular orbits ε= 0. For this case, the solution is

u = 1
r
= GM

h2

(
1+ α

1−Ω2 (sinΩθ−Ωsinθ)
)

(14)

and keeping in mind that α
1−Ω2 ≪ 1 if Ω is away from 1, the larger parenthesis does not vanish

and the orbit is stable (Figure 1).

Figure 1. Unperturbed (dotted) and perturbed (solid) orbits (ε= 0, α= 0.1, Ω= 3)

Distortions in the circular orbit can be seen from Figure 1. For the given specific parameter
values, the distances between the mass centers become shorter for the upper half of the graph
and longer for the lower half.

Distortions of an elliptic orbit is given in Figure 2 for ε= 0.5 (equation (10)).
Slight deviations from the elliptic orbit are observed which does not spoil the stability of the

orbit.
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Figure 2. Unperturbed (dotted) and perturbed (solid) orbits (ε= 0.5, α= 0.1, Ω= 3)

Nearly parabolic orbits have eccentricity values 0.99 ≤ ε ≤ 1.01 (Serafin [8]). When
the original elliptic orbit is nearly parabolic, the distance may tend to infinity with fluctuations.
A sample case is depicted in Figure 3.

Figure 3. Unperturbed (dotted) and perturbed (solid) orbits (ε= 0.99, α= 0.1, Ω= 2)

From Figure 3, it is clear that the lower branch tends to infinity for the specific parameter
values taken making the orbit unstable.

3.2 Parabolic Orbits (ε= 1)
Parabolic orbits are the limiting cases where the orbits transform from a stable to unstable
configuration or vice versa. The escape angles where the distances tend to infinity are from
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1+ cosθ = 0 or θe = ∓π. When fluctuation effects are included, these angles may be lower in
magnitude. The equation to be solved numerically is

1+cosθ+ α

1−Ω2 (sinΩθ−Ωsinθ)= 0. (15)

For the fluctuation frequencies being integer numbers, i.e., Ω = n, n = 1,2,3 . . . , the escape
angles are still the same with the unperturbed case, θe =∓π. However, for non-integer values,
they are less in magnitudes. The frequencies versus escape angles are given in Figure 4 for
2<Ω< 3.

Figure 4. Frequency versus escape angles (ε= 1, α= 0.1, 2<Ω< 3)

Note that, in this parametric range, only positive roots exist for equation (15) leading to a
divergence in the upper branch only. For the range of 3 <Ω< 4, only negative roots exist as
depicted in Figure 5.

Figure 5. Frequency versus escape angles (ε= 1, α= 0.1, 3<Ω< 4)

As a general rule, if the integer part of the frequency is even, the escape angles are positive
and if the integer part is odd, the escape angles are negative.
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Figure 6. Unperturbed (dotted) and perturbed (solid) orbits (ε= 1, α= 0.1, Ω= 2.3)

A sample plot is given to compare the unperturbed and perturbed solutions in Figure 6.

3.3 Hyperbolic Orbits (ε> 1)
For hyperbolic unperturbed orbits, the eccentricity is larger than 1 and the orbit is unstable
with the distances tending to infinity when 1+εcosθ = 0 or

θe = arccos
(
−1
ε

)
. (16)

For the perturbed orbits, the equation has to be solved numerically for the escape angles

1+εcosθ+ α

1−Ω2 (sinΩθ−Ωsinθ)= 0. (17)

Figure 7. Frequency versus positive escape angles (ε= 1.5, α= 0.1, 2<Ω< 10)

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 1, pp. 49–57, 2025



56 Distortion of Orbits Under Fluctuating Gravitational Forces: M. Pakdemirli

Figure 8. Frequency versus negative escape angles (ε= 1.5, α= 0.1, 2<Ω< 10)

In Figure 7, the positive escape angles and in Figure 8, the negative escape angles are given
for various fluctuation frequencies. From (16), the escape angles for the unperturbed equation
are θe =∓2.301 radians. For the given parameters, the positive escape angles are larger than
the unperturbed case whereas, the negative escape angles are smaller in magnitude than the
unperturbed case. A sample plot of the unperturbed and perturbed orbits is given in Figure 9.

Figure 9. Unperturbed (dotted) and perturbed (solid) orbits (ε= 1.5, α= 0.1, Ω= 2.3)

4. Concluding Remarks
The effects of perturbed gravitational forces on the orbits of celestial bodies are investigated
in detail. The perturbations are modeled as harmonic fluctuations about a mean value.
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The fluctuations distort the symmetry of the unperturbed orbits and results in deviations
from them. Depending on the physical parameters, they may alter the nature of the orbits also.
The escape angles are also affected by the fluctuations and a detailed analysis is given for the
escape angles.
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