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1. Introduction
In coding theory for the last five decades, many researchers has been attraction in codes over
finite rings and the special types of the rings Z2n, where 2n is the ring of integers modulo.

The authors was discovered the best well known non-linear binary codes can be constructed
by cyclic codes and gray map over a finite ring Z4 in [12] and many research articles has
indicated codes over a finite ring Z4 received much attention [1,4,5]. Coding theory, the covering
radius is one of the important parameter to find the maximum error-correcting capability of
codes. In Binary code, [3,6–8], the covering radius of codes are studied for linear and non-linear
codes can be received from codes over a finite ring Z4 via the gray map. In [13,14], the author to
find lower bound and upper bound of covering radius in a suitable of different types repetition
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codes by using some finite rings with respect to various weight.
In this paper, to determine the covering radius of some attraction classes of repetition codes

over a finite commutative ring R = F3 +uF3, u2 = 0 of integer modulo 3 by using to different
weight (distance).

2. Preliminaries
Let R = F3+uF3, u2 = 0, be a finite set with nine elements {0,1,2,u,1+u,2+u,2u,1+2u,2+2u}
with two operation ⊕3,⊙3 is said to be a finite commutative ring. It is denoted by (R,⊕3,⊙3)
with a characteristic 3. Let C ⊆ R, then C is say that a code. A code C is called the linear code,
if the ring R is an R-submodule of R l , where l is the length of a code(that is, C = (1 1 1 1 1),
l(C)= 5, C1 = (u u u u), l(C1)= 4). The elements of C is called a codeword of C.

A Gray Map h : R → (Z3 ×Z3) is defined by

h(0)= 0 0, h(1)= 0 1, h(2)= 0 2, h(u)= 1 0, h(1+u)= 1 1, h(2+u)= 1 2,

h(2u)= 2 0, h(1+2u)= 2 1, h(2+2u)= 2 2,

then the Gray map h1 : R l → (Z3 × Z3)l is define h1(y) = (h(y1),h(y2), · · · ,h(yn)), where
y= (y1, y2, · · · , yn) in [10].

Let y ∈ R l be a codeword of code, that is y= (y1, y2, · · · , yn) and in [15], the Lee weight of y
as given

wL(y)=


0, if y= 0,
1, if y= 1,2+2u,
2, if y= 2,1+2u,
3, if y= u,1+u,2+u,2u.

Let yi ∈ R be the codeword of Lee weight of yi is defined as
∑
i

wL(yi), i = 0, . . . ,8. If c1, c2 ∈ C,

be any two distinct codewords of Lee distance is defined as dL(C)= {dL(c1, c2) | c1 − c2 ̸= 0 and
c1, c2 ∈ C}. The minimum Lee weight of C is dL(C)=min{dL(c1, c2) | c1 − c2 ̸= 0 and c1, c2 ∈ C}.
In C is a linear code C, thus dL(C)=min{wL(c) | c ̸= 0 ∈ C}. Therefore, dL(c1, c2)= wL(c1 − c2).
If C is a linear code of length l over R with the number of codewords W and the minimum
Lee distance dL, is said to be an (l,W ,dL) code in R. In C is a linear code of length l over R,
therefore the Lee distance between z and C is defined as dL(z,C)=min{dL(z, c) | ∀ c ∈ C}, for
any z ∈ R l .

The Chinese Euclidean weight of x is

wCE(y)=



0, if y= 0,
1, if y= 1,2+2u,
2, if y= 2,1+2u,
3, if y= u,2u,
4, if y= 1+u,2+u,

in [11], where y= (y1, y2, · · · , yn) be a codeword of code over R l .
The parameters of Chinese Euclidean weight code is an (l,W ,dCE). In Chinese Euclidean

distance (weight), let c1, c2 ∈ R l be any two different codewords is defined as dCE(c1, c2) =
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wtCE(c1−c2). Let C be a linear code of length l over R. Then dCE(z,C)=min{dCE(z, c) | ∀ c ∈ C},
for any z ∈ R l .

In Gray weight, let y ∈ R l be a codeword of code, is define as

wG(y)=


0, if y= 0,
1, if y= 1,2,u and 2u,
2, if otherwise.

in [10].
In C is a linear code with Gray weight (distance), is an (l,W ,dG) code. Define, dG(c1, c2)=

wtG(c1 − c2), where c1, c2 ∈ R l and dG(z,C)=min{dG(z, c) | ∀ c ∈ C}, for any z ∈ R l .
In [2], Let y ∈ R l . The Bachoc weight of x is defined as

wB(y)=


0, if y= 0,
1, if y= 1,2,1+u,2+u,1+2u,2+2u,
3, if y= u,2u.

In C is a linear code with Bachoc weight (distance) is an (l,W ,dB) code. Define, dB(c1, c2) =
wtB(c1 − c2), where c1, c2 ∈ Rn and dB(z,C)=min{dB(z, c) | ∀ c ∈ C}, for any z ∈ Rn.

Example 2.1. Let y= 1 u 1+u 1+2u 2 ∈ R5. Then,

wL(y)= wL(1)+wL(u)+wL(1+u)+wL(1+2u)+wL(2)= 11,

wCE(y)= wCE(1)+wCE(u)+wCE(1+u)+wCE(1+2u)+wCE(2)= 12,

wG(y)= wG(1)+wG(u)+wG(1+u)+wG(1+2u)+wG(2)= 8, and

wB(y)= wB(1)+wB(u)+wB(1+u)+wB(1+2u)+wB(2)= 10.

3. Repetition Code With Covering Radius of Code in R
Let d be the distance of a code C in R with respect to different distance (weight), such as Lee
weight, Chinese Euclidean weight, Gray weight and Bachoc weight. The covering radius of a
code C is

Rd(C)= max
w∈Rn

{
min
c∈C

{d(w, c)}
}
,

where C is a code and Rd(C) is a covering radius of the code C with distance d.

In Fq = {0,1,γ2, · · · ,γq−1} is a finite field. Let C be a q-ary repetition code C over Fq , that is
C = {γ̄= (γγ · · ·γ) | γ ∈ Fq} and the repetition code C is an [l,1, l] code. Therefore, the covering
radius of the code C is ⌊ l(q−1)

q ⌋ by using in [9].
Let C be a block repetition code of size l, the parameter of C is an [l(q−1),1, l(q−1)] be a

generated by G = [11 · · ·1︸ ︷︷ ︸
l

γ2γ2 · · ·γ2︸ ︷︷ ︸
l

· · ·γq−1γq−1 · · ·γq−1︸ ︷︷ ︸
l

]. In [9], thus the covering radius of the

code C is ⌊ l(q−1)2
q ⌋, since it will be equivalent to a repetition code of length (q−1)l.

A code C ⊆ R is also linear code and is called the Generator matrix (G), if the basis elements
in a row of matrix.

In repetition code over R, there are two type of repetition codes of length l viz.
(1) Type A — (A generator matrix (GA) with unit element in R and its generated by the code
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CA).

(2) Type B — (A generator matrix (GB) with zero divisor element in R and its generated by
the code CB).

Type A (GA)→ [1 · · ·1︸ ︷︷ ︸
l

], [2 · · ·2︸ ︷︷ ︸
l

], [1+u · · ·1+u︸ ︷︷ ︸
l

], [2+u · · ·2+u︸ ︷︷ ︸
l

], [1+2u · · ·1+2u︸ ︷︷ ︸
l

], [2+2u · · ·2+2u︸ ︷︷ ︸
l

]

[l,k = 1,di = l], i = {L,CE,G,B},

Type B (GB)→ [u · · ·u︸ ︷︷ ︸
l

], [2u · · ·2u︸ ︷︷ ︸
l

], [u 2u · · ·u 2u︸ ︷︷ ︸
l

], [2u u · · ·2u u︸ ︷︷ ︸
l

]

(l,W = 3,d j = 3l), j = {L,CE,G,B}

Theorem 3.1. • RL(CA)= 2l,

• RL(CB)= 2l, here RL(CA(B)) is a covering radius of codes CA(B) for generator matrix GA(B)

by using Lee weight and l is a length of code in Type A and Type B.

Proof. Let y ∈ R l by ϱ0 times 0’s, ϱ1 times 1’s, ϱ2 times 2’s, ϱ3 times 3’s, ϱ4 times 4’s, ϱ5 times
5’s, ϱ6 times 6’s, ϱ7 times 7’s, ϱ8 times 8’s in y and

∑
i
ϱi = l and the code ci ∈ {γ(CA) | γ ∈ R l},

where i = 0 to 8. Then

dL(y, c0)= wtL(y−00 · · ·0)

= 0ϱ0 +1ϱ1 +2ϱ2 +3ϱ3 +4ϱ4 +5ϱ5 +6ϱ6 +7ϱ7 +8ϱ8

= ϱ1 +2ϱ2 +3ϱ3 +3ϱ4 +3ϱ5 +3ϱ6 +2ϱ7 +ϱ8

= n−ϱ0 +ϱ2 +2ϱ3 +2ϱ4 +2ϱ5 +2ϱ6 +ϱ7.

Alike,

dL(y, c1)= l−ϱ1 +ϱ3 +2ϱ4 +2ϱ5 +2ϱ6 +2ϱ7 +ϱ8,

dL(y, c2)= l−ϱ2 +ϱ0 +ϱ4 +2ϱ5 +2ϱ6 +2ϱ7 +2ϱ8,

dL(y, c3)= l−ϱ3 +2ϱ0 +ϱ1 +ϱ5 +2ϱ6 +2ϱ7 +2ϱ8,

dL(y, c4)= l−ϱ4 +2ϱ0 +2ϱ1 +ϱ2 +ϱ6 +2ϱ7 +2ϱ8,

dL(y, c5)= l−ϱ5 +2ϱ0 +2ϱ1 +2ϱ2 +ϱ3 +ϱ7 +2ϱ8,

dL(y, c6)= l−ϱ6 +2ϱ0 +2ϱ1 +2ϱ2 +2ϱ3 +ϱ4 +ϱ8,

dL(y, c7)= l−ϱ7 +ϱ0 +2ϱ1 +2ϱ2 +2ϱ3 +2ϱ4 +ϱ5,

dL(y, c8)= l−ϱ8 +ϱ1 +2ϱ2 +2ϱ3 +2ϱ4 +2ϱ5 +ϱ6.

Then, dL(y,CA)=min{dL(x, ci) | i = 0 to 8}≤ 2l and rL(CA)≤ 2l.
If y1 ∈ R l , where as y1 = 00 · · ·0︸ ︷︷ ︸

k

1 1 · · ·1︸ ︷︷ ︸
k

2 2 · · ·2︸ ︷︷ ︸
k

u u · · ·u︸ ︷︷ ︸
k

1+u 1+u · · ·1+u︸ ︷︷ ︸
k

2+u 2+u · · ·2+u︸ ︷︷ ︸
k

2u 2u · · ·2u︸ ︷︷ ︸
k

1+2u 1+2u · · ·1+2u︸ ︷︷ ︸
k

2+2u 2+2u · · ·2+2u︸ ︷︷ ︸
l−(2+2u)k

, here k = ⌊ l
R

⌋
. Thus, dL(y1, ci) = 12k,

i = 0 to 8 and rL(CA)≥min{dL(y1, ci) | i = 0 to 8}≥ 2l and hence, rL(CA)= 2l.
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Let y = u u · · ·u︸ ︷︷ ︸
l
2

000 · · ·0︸ ︷︷ ︸
l
2

∈ R l . The code CB = {γ(u u · · ·u) | γ ∈ R l} and it is generated by

Type-B. Thus, rL(CB)≥ 2l.
If y ∈ R l be any codeword and take y has ϱi links i’s, with

∑
i
ϱi = l, where i = 0 to 8. Then,

rL(CB)≤ 2l.

Theorem 3.2. For Rd(C)=max
w∈R l

{minc∈C{d(w, c)}}, where

d = {Chinese Euclidean weight,Gray weight and Bachoc weight}.

(1) RCE(CA)= 20l
9 , 3n

2 ≤ RCE(CB)≤ 2l,

(2) RG(CA)= 4l
3 , RG(CB)= l, and

(3) RB(CA)= 4l
3 , 3l

2 ≤ RB(CB∗)≤ 2l, where B∗ =Type-B and l is a length of code in Type A and
Type B.

Proof. The methods of proof is follows from Theorem 3.1, by using the Type A and Type B with
different weight, such as wCE(x), wG(x), and wB(x).

4. Same Size of Length in Block Repetition Code

Let BRC2l be a Block Repetition Code with length 2l and its generated by GAB =
[11 · · ·1︸ ︷︷ ︸

l

u u · · ·u︸ ︷︷ ︸
l

] is size of length (l) for each block and the parameters of BRC2l code is an

[2l,1,3l,3l,3l,3l].

Theorem 4.1. (1) RL(BRC2l)= 4l,

(2) RCE(BRC2l)= 38l
9 ,

(3) RG(BRC2l)= 7l
3 , and

(4) RB(BRC2l)= 8l
3 .

Proof. Generator matrix GAB and [7] and by using Theorem 3.1, then

RL(BRC2l)≥ 4l. (4.1)

Consider y= (y1 | y2) ∈ R2l , where y1, y2 ∈ R2l and also take in y1, ϱ j appears j’s, and in y2, ϱ j

appears j′s, with
∑
j

r j =∑
j

s j = l and c j ∈ {γ(GAB) | γ ∈ R2l}, j = 0 to 8.

Then, dL(y,BRC2l) = min{dL(y, c j) | j = 0 to 8} is less than or equal to 2l + 2l = 4l. Thus,
dL(y,BRC2l)≤ 4l. Hence,

RL(BRC2l)≤ 4l . (4.2)

By (4.1) and (4.2), thus RL(BRC2l)= 4l.
The remaining Proof of Theorem 4.1 is pursue from first part.

Corollary 4.1. Let

GA = [1 · · ·1︸ ︷︷ ︸
l

2 · · ·2︸ ︷︷ ︸
l

1+u · · ·1+u︸ ︷︷ ︸
l

2+u · · ·2+u︸ ︷︷ ︸
l

1+2u · · ·1+2u︸ ︷︷ ︸
l

2+2u · · ·2+2u︸ ︷︷ ︸
l

] (4.3)

is a Type A with unit element in R. Then,
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• RL(BRC6l)= 12l,

• RCE(BRC6l)= 40l
3 ,

• RG(BRC6l)= 8l, and

• RB(BRC6l)= 8l.

Proof. From (4.3) and use to Theorems 3.1, 3.2 and 4.1.

Corollary 4.2. Let

GB = [u u · · ·u︸ ︷︷ ︸
l

2u 2u · · ·2u︸ ︷︷ ︸
l

] (4.4)

is a Type B with zero divisor element in R. Then,

• RL(BRC2l)= 4l,

• 3l ≤ RCE(BRC2l)≤ 4l,

• RG(BRC2l)= 2l, and

• 3l ≤ RB(BRC2l)≤ 4l.

Proof. In (4.4) is apply to Theorems 3.1, 3.2 and 4.1.

5. Different Size of the Length for Block Repetition Code
Let

GAB = [11 · · ·1︸ ︷︷ ︸
k1

u u · · ·u︸ ︷︷ ︸
k2

] (5.1)

be the generated matrix for the two various block repetition code for a size of length is k1,k2 and
it is denoted by BRCk1+k2 . The parameters of BRCpk1+k2 code is an [k1 + k2,1,min{3k1,k1 +
3k2},min{k1,k1 +k2},min{3k1,k1 +3k2},min{3k1,k1 +3k2},min{3k1,2k1 +32}].

Theorem 5.1. • RL(BRCk)= 2k,

• RCE(BRCk)= 20k1
9 +2k2,

• RG(BRCk)= 4k
3 , and

• RB(BRCk)= 4k
3 , there with k =

2∑
i=1

ki .

Proof. A generator matrix (5.1), use to Theorem 4.1 and apply the two different size of length
(k1,k2).

Corollary 5.1. Let

GB = [uu · · ·u︸ ︷︷ ︸
k1

2u 2u · · ·2u︸ ︷︷ ︸
k2

] (5.2)

is a Type B with zero divisor element and two distinct length (k1,k2) in R. Then

• RL(BRCk)= 2k,

• 3k
2 ≤ RCE(BRCk)≤ 2k,
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• RG(BRCk)= k, and

• 4k
3 ≤ RB(BRCk)≤ 2k, here k =

2∑
i=1

ki .

Proof. In (5.2) by two distinct length(k1,k2) and different weights in put to Theorem 5.1.

Corollary 5.2. Let

GA = [1 · · ·1︸ ︷︷ ︸
k1

2 · · ·2︸ ︷︷ ︸
k2

1+u · · ·1+u︸ ︷︷ ︸
k3

2+u · · ·2+u︸ ︷︷ ︸
k4

1+2u · · ·1+2u︸ ︷︷ ︸
k5

2+2u · · ·2+2u︸ ︷︷ ︸
k6

]. (5.3)

be a Type A with unit element and alternate size of length in R. Then

• RL(BRCk)= 2k,

• RCE(BRCk)= 20k
9 ,

• RG(BRCk)= 4k
3 , and

• RB(BRCk)= 4k
3 , where k =

6∑
i=1

ki .

Proof. In (5.3) with alternate size of length and also weight is apply to Theorem 5.1.
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