
Journal of Informatics and Mathematical Sciences
Volume 2 (2010), Numbers 2 & 3, pp. 63–70
© RGN Publications

http://www.rgnpublications.com

On L1-approximation of Trigonometric Series

László Leindler

Abstract. In the paper [3] we defined three new classes of sequences motivated
by the Logarithm Rest Bounded Variation Sequences defined by S.P. Zhou
[4]. By means of these classes we extended Zhou’s theorems pertaining to
L1-convergence of sine series. Very recently R.J. Le and S.P. Zhou [1] proved
L1-approximation theorems. Now we generalize their theorems to our wider
classes.

1. Introduction

In a recent paper S.P. Zhou [4] defined the notion of Logarithm Rest Bounded
Variation Sequences (LRBVSN) which plays central role in his paper. He established,
among others, necessary and sufficient condition for L1-convergence of the series

∞∑

n=1

an sin nx(1.1)

assuming that a := {an} ∈ LRBVSN, but without the prior condition that the sum
function of (1.1) is integrable.

The notions and notations to be used in this paper are collected in Section 2.
Next, in a paper to be appearing in Acta Math. Hungar., R.J. Le and S.P. Zhou [1]

proved some theorems studying the order of approximation by the partial sums of
series (1.1) also maintaining that a ∈ LRBVSN.

As one of the referees of the paper [1], we analized why the logarithm
sequences play the crucial role in L1-convergence of sine series. After collecting the
cardinal properties of the sequence {log n}, we could show that if a sequence has
three essential properties of the sequence {log n}, then all of the relevant results of
Zhou hold for this sequence, too.

These sequences have been called Log-Type Sequences, in symbol LTS. By
means of LTS two further classes of sequences have been defined, the Log-Type

2000 Mathematics Subject Classification. 42A10, 42A32.
Key words and phrases. Trigonometric approximation; Logarithm sequences; Embedding relations.



64 László Leindler

Rest Bounded Sequences (LTRBVS) and the γ Log-Type Rest Bounded Sequences
(γLTRBVS), which satisfy the following embedding relations:

LRBVSN ⊂ LTRBVS⊂ γLTRBVS.(1.2)

The embedding relations (1.2) have offered to extend Zhou’s theorems. In [3]
we established four theorems being analogies of Zhou’s theorems.

The aim of the present paper is similar to that of [3], to extend the theorems of
Le and Zhou from the class LRBVSN to the classes LTRBVS or γLTRBVS.

2. Notions and Notations

Let L2π be the space of all real or complex integrable functions f (x) of period
2π endowed with norm

‖ f ‖ :=

∫ π

−π
| f (x)|d x .

For those x where the trigonometric series converges, write

f (x) :=
∞∑

n=1

an sin nx ,(2.1)

g(x) :=
∞∑

n=1

an cos nx ,(2.2)

and

h(x) :=
∞∑

n=−∞
cneinx .(2.3)

As usual, let sn( f , x) and sn(g, x) be n-th partial sums of (2.1) and (2.2),
respectively, furthermore denote

sn(h, x) :=
n∑

k=−n

ckeikx .(2.4)

Next we recall some definitions of generalization of decreasing monotonicity
related to our topic.

A sequence a := {an} of positive numbers will be called Almost Monotone
Sequence, briefly a ∈ AMS, if an µ K(a)am for all n ½ m, where K(a) is a positive
constant.

Let γ := {γn} be a given positive sequence. A null-sequence a := {an} (an→ 0)
of real or complex numbers satisfying the inequalities

∞∑

n=m

|∆an|µ K(a)γm (∆an := an − an+1), m= 1, 2, . . .

is said to be a sequence of γ rest bounded variation, in symbol, a ∈ γRBVS.
If γn ≡ |an|, then γRBVS reduces to RBVS, that is, to a rest bounded variation

sequence.
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We emphasize that if a ∈ γRBVS it may have infinitely many zeros and negative
terms, but this is not the case if a ∈ RBVS, see e.g. [2].

A real or complex bounded sequence c := {cn} is named Logarithm Rest Bounded
Variation Sequence, c ∈ LRBVSN, if N is a positive integer and the sequence
{cn log−N n} belongs to γRBVS, where γn := |cn| log−N n, see e.g. [1].

We shall also use the notation L � R at inequalities if there exists a positive
constant K such that L µ KR holds, not necessarily the same at each occurance.

A positive nondecreasing sequence α := {αn} will be called Log-Type Sequence,
briefly LTS, if it satisfies the conditions:

αn→∞,(2.5)

αn2 � αn,(2.6)

and

|∆αn| �
αn

n log n
.(2.7)

By means of Log-Type Sequence we defined the following two classes of
sequences, in [3] only for positive {an}.

Let γ := {γn} be a given positive sequence. If α := {αn} ∈ LTS and
� an

αn

	 ∈
γRBVS, then the sequence a := {an} will be called γ Log-Type Rest Bounded
Variation Sequence, in symbol, a ∈ γLTRBVS.

If γn =
|an|
αn

, then the sequence a will be said simply Log-Type Rest Bounded
Variation Sequence, and denote by LTRBVS.

In other words, a ∈LTRBVS, if α ∈LTS and
� an

αn

	 ∈RBVS.

3. Theorems

First we recall the main results of Le and Zhou [1], utilizing the notations of
(2.i), i = 1, 2, 3.

Theorem A. Let a nonnegative sequence {an} ∈ LRBVSN, {ψn} a decreasing sequence
tending to zero with

ψn�ψ2n.(3.1)

Then

‖ f − sn( f )‖ �ψn(3.2)

if and only if

an log n�ψn and
∞∑

k=n

ak

k
�ψn.(3.3)

Theorem B. Let {cn} ∈ LRBVSN and {ψn} a decreasing null-sequence. If

|cn| log n�ψn and
∞∑

k=n

|ck|
k
�ψn(3.4)
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and one of the following conditions
∞∑

k=n+1

|∆ck −∆c−k| log k�ψn(3.5)

or
∞∑

k=n+1

|∆ck +∆c−k| log k�ψn(3.6)

is satisfied, then

‖h− sn(h)‖ �ψn(3.7)

holds.

Corollary. If a nonnegative sequence {an} ∈ LRBVSN, and {ψn} is a decreasing null-
sequence, then (3.3) implies that

‖ f − sn( f )‖+ ‖g − sn(g)‖ �ψn(3.8)

holds.

As a sample result proved in [3] and being used in the proof of our first theorem
reads as follows.

Theorem C. Let a ∈ LTRBVS, then the assertions

lim
n→∞
‖ f − sn( f )‖= 0(3.9)

and
∞∑

n=1

an

n
<∞(3.10)

are equivalent.

We remark that if αn = (log n)N then Theorem C includes Theorem 2 of [4].
We intend to prove the following theorems:

Theorem 1. Let a nonnegative sequence a ∈ LTRBVS and {ψn} be a decreasing null-
sequence with (3.1). Then the assertions (3.2) and (3.3) are equivalent.

It is plain that if αn = (log n)N , then Theorem 1 reduces to Theorem A.
The implication (3.3)⇒(3.2) has a further generalization.

Theorem 2. Let γ := {γn} ∈ AMS and a nonnegative sequence a ∈ γLTRBVS,
furthermore {ψn} be a decreasing null-sequence. If

αnγn log n�ψn and
∞∑

k=n

αkγk

k
�ψn,(3.11)

then (3.2) holds.
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Theorem 3. Both Theorem B and Corollary can be improved such that the condition
{cn}({an}) ∈ LRBVSN is replaced by the assumption {cn}({an}) ∈ γLTRBVS, where
γn := |cn|

αn

� an

αn

�
, respectively.

4. Proofs of the Theorems

Proof of Theorem 1. Principally our proof follows the proof of Theorem A. First
we prove the sufficiency of the assumptions of (3.3). By Theorem C, condition
(3.10) implies that ‖ f − sn( f )‖ tends to zero, consequently we only have to verify
that (3.2) also holds.

By Abel’s transformation

f (x)− sn( f , x) =
∞∑

k=n+1

ak sin kx(4.1)

=
∞∑

k=n+1

ak

αk
αk sin kx

=− an+1

αn+1

n∑

k=1

αk sin kx +
∞∑

k=n+1

∆
ak

αk

k∑

ν=1

αν sinν x

=: I1(x) + I2(x).

Since

n∑

k=1

αk sin kx =
n−1∑

k=1

∆αk

k∑

ν=1

sinν x +αn

n∑

k=1

sin kx ,

thus

∫ π

0

����
n∑

k=1

αk sin kx

����d x �
n−1∑

k=1

|∆αk|
∫ π

0

����
k∑

ν=1

sinν x

����d x

+αn

∫ π

0

����
n∑

k=1

sin kx

����d x

�
� n−1∑

k=1

|∆αk| log k+αn log n
�

� αn log n.

Hence

I1 :=

∫ π

0

|I1(x)|d x � an+1

αn+1
αn log n� an+1 log n(4.2)
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and

I2 :=

∫ π

0

|I2(x)|d x

�
∞∑

k=n+1

����∆
ak

αk

����
∫ π

0

����
k∑

ν=1

αν sinν x

����d x

�
∞∑

k=n+1

����∆
ak

αk

����αk log k.

Denote

Rn :=
∞∑

k=n

����∆
ak

αk

����, n½ 1.

Then

I2�
∞∑

k=n+1

(Rk − Rk+1)αk log k(4.3)

�
∞∑

k=n+1

Rk+1(αk+1 log(k+ 1)−αk log k)− Rn+1αn+1 log(n+ 1).

Next, using the conditions
� an

αn

	 ∈ RBVS and (2.7), we get

I2�
∞∑

k=n+1

ak+1

αk+1

�
|∆αk| log(k+ 1) +

αν

ν

�
+ an+1 log(n+ 1)(4.4)

�
∞∑

k=n+1

ak+1

k
+ an+1 log(n+ 1).

Collecting the estimations (4.1)–(4.4), and using the assumptions (3.3), the
implication (3.3)⇒(3.2) is proved.

In order to prove the necessity of (3.3) we define the following function:

φn(x) :=
n∑

k=1

�
sin(n+ k)x

k
− sin(n− k)x

k

�
= 2cos nx

n∑

k=1

sin kx

k
,

and utilize the well-known inequality
����

n∑

k=1

sin kx

k

����� 1.

Since, by (3.2), we have that
n∑

k=1

an+k

k
=

����
∫ 2π

0

( f (x)− sn( f , x))φn(x)d x

����� ‖ f − sn( f )‖ �ψn.(4.5)

Furthermore, by
� an

αn

	 ∈ RBVS, for all 1µ k µ n

a2n+1

α2n+1
� a2n

α2n
� an+k

αn+k
,(4.6)
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and, by (2.5) and (2.6), α2n+1� αn+k, thus (4.6) implies that

a2n+1� a2n� an+k, 1µ k µ n.(4.7)

Now, using (4.5) and (4.7), we get

a2n+1 log(2n+ 1)� a2n log 2n� a2n

n∑

k=1

1

k
�

n∑

k=1

an+k

k
�ψn,(4.8)

whence, by (3.1),

an log n�ψn(4.9)

also holds.
Finally we show that

∞∑

k=n

ak

k
�ψn(4.10)

also comes from (3.2).
Since

2
∞∑

k=[(n+1)/2]

a2k+1

2k+ 1
=

∫ π

0

( f (x)− sn( f , x))d x � ‖ f − sn( f )‖ �ψn,(4.11)

thus, by virtue of (3.1), (4.7) and (4.11), we also verified (4.10).
This completes the proof. ¤

Proof of Theorem 2. The proof proceeds on the line of Theorem 1 up to the
estimation given in (4.3). Next, we utilize the new assumption

� an

αn

	 ∈ γRBVS

instead of
� an

αn

	 ∈ RBVS, which implies that an

αn
µ Rn� γn, whence

an� αnγn, n= 1, 2, . . .(4.12)

follows. Using these estimation at the end of (4.4), we obtain that

I2�
∞∑

k=n+1

αk+1γk+1

k
+αn+1γn+1 log(n+ 1).(4.13)

Hence, by (3.11),

I2�ψn(4.14)

follows.
If we put the estimations (4.12) into (4.2), too, then, by (3.11), we get that

I1�ψn(4.15)

also holds.
The last two estimations and (4.1) convey the assertion of Theorem 2, thus the

proof is complete. ¤
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Proof of Theorem 3. The proof is a simple repetition of the proof of Theorem B,
putting everywhere αn in place of (log n)N , and using Theorem 1 instead of
Theorem A.

We omit the details. ¤
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