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1. Introduction

In [4] the authors studied some properties including inversion and applications of a class of
symmetric circulant matrices. When the matrix is singular, the Moore-Penrose inverse replaces
the inverse. In Section 2 we calculate the Moore-Penrose inverse for matrices

(
a b b · · · b

)
.

The concept of parallel sum of two hpsd (see ref 2.3) matrices was introduced by W.N. Anderson,
Jr. and R.J. Duffin [1]. The parallel sum of matrices is useful in electrical networks. We calculate
the parallel sum of two hpsd matrices in this section. In Section 3 the spectral norm and
spectral radius for symmetric circulant matrices with binomial coefficients are derived using
some Banach algebra results.
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A circulant matrix A = (
a1 a2 a3 · · · an

)
of order n is symmetric if

(i) a n
2 + j = a n

2 −( j−2) , 2≤ j ≤ n
2

, when n is even,

(ii) a n
2 +

(
j+ 1

2

) = a n
2 +

(
3−2 j

2

) , 1≤ j ≤ n−1
2

, when n is odd.

In particular a matrix A = (
a b b · · · b

)
of order n and the matrix

Cn = (
nC0 nC1 nC2 · · · nCn−1

)
with Binomial coefficients are symmetric circulant.

We have [1],
[
1 2
2 1

]
,

1 3 3
3 1 3
3 3 1

,


1 4 6 4
4 1 4 6
6 4 1 4
4 6 4 1

 , · · · are symmetric circulant matrices with

binomial coefficients.

Given an n×n matrix A with real (or complex) entries there exists a unique n×n matrix X
satisfying the Moore-Penrose equations:

(1) AX A = A ,

(2) X AX = X ,

(3) (AX )∗ = AX ,

(4) (X A)∗ = X A ,

where ∗ denotes the conjugate transpose. Such a unique X corresponding to A is called the
Moore-Penrose inverse of A and is denoted by A† .

2. Moore-Penrose Inverse of Certain Singular
Symmetric Circulant Matrix

Theorem 2.1. For two distinct real numbers a, b with a+ (n−1)b = 0, the Moore-Penrose A† of

A = (
a b b · · · b

)
of order n is A† = 1

(a−b)2

(
a b b · · · b

)
.

Proof. Since a+ (n−1)b = 0, clearly A is singular, we can find the Moore-Penrose inverse of A
as follows:

When A = (
a b b · · · b

)
, A2 = (

c d d · · · d
)
, where c and d are given by

c = a2 + (n−1)b2 , d = 2ab+ (n−2)b2 .

If X =
(
x1 x2 x2 · · · x2

)
, since A , X are circulant, AX = X A .

Hence

AX A = A2X = (
c d d · · · d

)(
x1 x2 x2 · · · x2

)
= (

cx1 + (n−1)dx2 dx1 + (c+ (n−1)d)x2 · · · dx1 + (c+ (n−1)d)x2
)
.
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Hence

AX A = A

=⇒ (
cx1 + (n−1)dx2 dx1 + (c+ (n−1)d)x2 · · · dx1 + (c+ (n−1)d)x2

)= (
a b b · · · b

)
.

⇐⇒ cx1 + (n−1)dx2 = a, dx1 + (c+ (n−1)d)x2 = b.

⇐⇒ (a−b)x1 − (a−b)x2 = 1

⇐⇒ x1 − x2 = 1
a−b

.

Thus

AX A = A =⇒ x1 − x2 = 1
a−b

, (since a+ (n−1)b = 0).

When

x1 = x2 + 1
a−b

,

X2 =
(
nx2

2 + 2
a−b

x2 + 1
(a−b)2 · · · 2

a−b
x2 +nx2

2
)
,

so that

X2A =
(
nx2

2 + 2
a−b

x2 + 1
(a−b)2 · · · 2

a−b
x2 +nx2

2
)(

a b b · · · b
)

= (
c d d · · · d

)
where

c = nax2
2 + a

(a−b)2 + 2ax2

a−b
+ 2b(n−1)x2

a−b
+n(n−1)bx2

2,

d = nbx2
2 + b

(a−b)2 + 2bx2

a−b
+ 2ax2

a−b
+nax2

2 + 2(n−2)bx2

a−b
+n(n−2)bx2

2

=
(

a
(a−b)2

b
(a−b)2 · · · b

(a−b)2

)
.

Hence X AX = X iff(
a

(a−b)2
b

(a−b)2 · · · b
(a−b)2

)
= (

x1 x2 x2 · · · x2
)

.

Comparing

x1 = a
(a−b)2 , x2 = b

(a−b)2 .

Thus

X =
(

a
(a−b)2

b
(a−b)2 · · · b

(a−b)2

)
.

Since A and X are symmetric circulant matrices, (X A)∗ = X A = AX .

Hence the Moore-Penrose inverse A† = 1
(a−b)2

(
a b b · · · b

)
.
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Corollary 2.2. The Moore-Penrose inverse of a symmetric circulant matrix is symmetric
circulant.

Definition 2.3. A square matrix A is said to be Hermitian positive semi-definite(hpsd) if A∗ = A
and all the eigenvalues of A are greater than or equal to zero and at least one eigenvalue is
zero.

Lemma 2.4. If A = (
a1 a2 a2 · · · a2

)
, B = (

b1 b2 b2 · · · b2
)

are two symmetric
circulant matrices of order n with a1 > a2 , a1 + (n−1)a2 = 0 and b1 > b2 , b1 + (n−1)b2 = 0 then
A+B is hpsd.

Proof. Since a1 > a2 , a1 + (n−1)a2 = 0, we have all the eigenvalues of A are greater than or
equal to 0, so that A is hpsd. Similarly B is also hpsd.

Now A+B = (
a1+ b1 a2 +b2 · · · a2 +b2

)
, clearly A+B is also hpsd.

Definition 2.5. The parallel sum of two n×n matrices A and B is defined as A(A+B)†B.

Theorem 2.6. If A = (
a1 a2 a2 · · · a2

)
, B = (

b1 b2 b2 · · · b2
)

satisfying the conditions

of Lemma 2.4 then the parallel sum of A and B is
(

1
((a1 −a2)+ (b1 −b2))2 A(A+B)

)
B.

Proof. Since A and B are hpsd, A+B is also hpsd.

Now A+B = (
a1+ b1 a2 +b2 · · · a2 +b2

)
.

By Theorem 2.1, (A+B)† = 1
((a1 −a2)+ (b1 −b2))2

(
a1+ b1 a2 +b2 · · · a2 +b2

)
.

Therefore the parallel sum is
1

((a1 −a2)+ (b1 −b2))2 A(A+B)B.

Theorem 2.7. For two distinct elements a, b in the complex field, the spectral norm of the
symmetric circulant matrix A = (

a b b · · · b
)

of order n is ρ(A)=max{|a+ (n−1)b|, |a−b|}.

Proof. From [2] the eigenvalues of A are a+ (n−1)b, a−b.

Thus the spectrum of A is σ(A)= {a+ (n−1)b, a−b}.

Hence the spectral norm of A is ρ(A)=max{|a+ (n−1)b|, |a−b|}.
More over if A is singular then a+ (n−1)b = 0 and hence spectral radius of A is |a−b|.
Remark 2.8. Perron and Frobenius theorem [3] states that if A = (ai j) is a matrix with non-
negative elements ai j ≥ 0, there exists an eigenvector of A with non-negative coordinates
and with eigenvalue ρ , such that all other eigenvalues satisfy |λ| ≤ ρ . In particular if
A = (

a b b · · · b
)

(of order n) and if a, b are nonnegative then a+ (n−1)b is the maximum
eigenvalue of A and by Perron and Frobenius theorem an eigenvector corresponding to
a+ (n−1)b contains non-negative coordinates. We can choose this eigenvector as (1,1,1, · · · ,1).

Theorem 2.9 ([2]). For any element of a Banach Algebra X of the form e− z with ‖z‖ < 1 there
exists a unique y= e−x in X with ‖x‖ < 1 such that y2 = e− z i.e., (e−x)2 = e− z. In other words
e− z has a square root.
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This could be used to establish the following theorem:

Theorem 2.10. For two distinct elements a,b in a Banach algebra X of all n× n complex

matrices with |a| < 1
2

and |b| < 1
2

the of symmetric circulant matrix I − A , where A =(
a b b · · · b

)
of order n has a square root I −B in X .

Proof. Since the eigenvalues of A = (
a b b · · · b

)
are λ= a+ (n−1)b, a−b, a−b, · · · ,a−b

(n−1 times). For |a| < 1
2

and |b| < 1
2

, we have each eigen value λ of A satisfies |λ| < 1.

Thus the spectral radius ρ(A)=max
{|λi| : i = 1, · · · ,n

}
is less than 1.

Therefore by Theorem 2.9 there exists a unique I −B such that (I −B)2 = I − A in X .

Hence I −B is the square root of I − A .

3. Symmetric Circulant Matrices with Binomial Coefficients

Theorem 3.1. The eigenvalues of the symmetric circulant matrix

Cn = (
nC0 nC1 nC2 · · · . nCn−1

)
are given by 2n−1 ,

(
2n cos2n πm

n
−1

)
, m = 1,2,3, · · · ,n−1.

Proof. We have the eigenvalues of a circulant matrix A = (a0,a1,a2, · · · ,an−1) are

λ j =
n−1∑
j=0

a j
(
e

2πik
n

) j, k = 0,1,2, · · · ,n−1.

i.e.,

λ j =
n−1∑
j=0

a j cos
2πk j

n
+ i

n−1∑
j=0

a j sin
2πk j

n
, k = 0,1,2, · · · ,n−1 .

Since Cn is symmetric,

λk =
n−1∑
j=0

nC j cos
2πk j

n
, k = 0,1,2, · · · ,n−1.

Thus the eigen values of Cn−1 are

λ0 = nC0 +nC1 +nC2 +·· ·+nCn−1 = 2n −1,

λ1 = nC0 +nC1 cos
2π
n

+nC2 cos
4π
n

+·· ·+nCn−1 cos
2(n−1)π

n
=

(
1+cos

2π
n

)n
−1,

λ2 = nC0 +nC1 cos
4π
n

+nC2 cos
8π
n

+nC3 cos
12π

n
+·· · =

(
1+cos

4π
n

)n
−1,

λn =
(
1+cos

2(n−1)π
n

)n
−1.

Also det(Cn)=
n−1∏
m=0

(
2n cos2n πm

n
−1

)
.
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Theorem 3.2. The spectral norm of Cn is ρ(Cn)=max{2n−1, |(2cos2 π

n
)n −1|}.

Proof. From Theorem 3.1 we have its spectrum is

σ(Cn)=
{

2n −1,
(
1+cos

2π
n

)n
−1,

(
1+cos

4π
n

)n
−1, · · · ,

(
1+cos

2(n−1)π
n

)n
−1

}
=

{
2n −1,2n cos2n π

n
,2n cos2n 2π

n
−1, · · · ,2n cos2n (n−1)π

n
−1

}
.

Now

ρ(Cn)=max
{

2n−1,
∣∣∣(2cos2 π

n

)n −1
∣∣∣ ,

∣∣∣∣(2cos2 2π
n

)n
−1

∣∣∣∣ , · · · ,
∣∣∣∣(2cos2 (n−1)π

n

)n
−1

∣∣∣∣} .

Since cos2n πm
n

is maximum for m = 1 we get ρ(Cn)=max
{
2n−1,

∣∣∣(2cos2 π

n

)n −1
∣∣∣}.

Remark 3.3. In Cn all the elements are positive and 2n−1 is the maximum eigenvalue. So by
Perron and Frobenius theorem an eigenvector corresponding to 2n−1 contains non-negative
coordinates. We can choose this eigenvector as (1,1,1, · · · ,1).
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