Journal of Informatics and Mathematical Sciences

Volume 2, Number 1 (2010), pp. 35–44 © RGN Publications

On Mixed Type Duality for Multiobjective Programming Containing Support Functions

I. Husain, A. Ahmed, and Rumana, G. Mattoo

Abstract. A mixed type vector dual to a multiobjective programming problem containing support functions is formulated and various duality results are proved under generalized invexity conditions. Special cases are generated from our results.

1. Introduction

In [5], Husain *et al.* considered the following multiobjective programming containing support functions

(NP) Minimize
$$(f^1(x) + S(x|C^1), ..., f^p(x) + S(x|C^p))$$

subject

$$g^{j}(x) + S(x|D^{j}) \le 0, \quad j = 1, 2, ..., m.$$

Where

(i) $f^i: \mathbb{R}^n \to \mathbb{R}$ and $g^j: \mathbb{R}^n \to \mathbb{R}$, j = 1, 2, ..., m are differentiable functions and

(ii) $S(\cdot|C^i)$, i=1,2,...,p and $S(\cdot|D^j)$, j=1,2,...,m are support functions of a compact convex set C^i , i=1,2,...,p and D^j , j=1,2,...,m in R^n , to be defined later.

The following Wolfe type dual to the problem (NP) is presented [5]:

(WND) Maximize
$$\left(f^{1}(u) + u^{T}z^{1} + \sum_{j=1}^{m} y^{j}(g^{j}(u) + u^{T}w^{j}), \dots, \right)$$

 $f^{p}(u) + u^{T}z^{p} + \sum_{j=1}^{m} y^{j}(g^{j}(u) + u^{T}w^{j}) \right)$

Key words and phrases. Multiobjective programming problem; Support functions; Mixed type duality; Generalized invexity; Related problems.

subject to

$$\sum_{i=1}^{p} \lambda^{i} \nabla (f^{i}(u) + u^{T} z^{i}) + \sum_{j=1}^{m} y^{j} \nabla (g^{j}(u) + u^{T} w^{j}) = 0,$$

$$z^{i} \in C^{i}, \quad i = 1, 2, \dots, p,$$

$$w^{j} \in D^{j}, \quad j = 1, 2, \dots, m,$$

$$y \ge 0,$$

$$\lambda > 0, \quad \sum_{i=1}^{p} \lambda^{i} = 1.$$

The problem (WND) is a dual to (NP) assuming that

$$\sum_{i=1}^{p} \lambda^{i} (f^{i}(\cdot) + (\cdot)^{T} z^{i}) + \sum_{i=1}^{m} y^{j} (g^{j}(\cdot) + (\cdot)^{T} w^{j})$$

is pseudoinvex with respect to η . The authors in [5] further weakened the invexity required in Wolfe type by constructing the following Mond-Weir type vector dual.

The Mond-Weir vector type dual is the following to (NP):

(M-WNP) Maximize
$$(f^1(u) + u^T z^1, \dots, f^p(u) + u^T z^p)$$

subject to
$$\sum_{i=1}^p \lambda^i \nabla (f^i(u) + u^T z^i) + \sum_{j=1}^m y^j (g^j(u) + u^T w^j) = 0,$$

$$z^i \in C^i, \quad i = 1, 2, \dots, p,$$

$$w^j \in D^j, \quad j = 1, 2, \dots, m,$$

$$\sum_{j=1}^m y^j (g^j(u) + u^T w^j) \ge 0,$$

$$\lambda > 0, y \ge 0.$$

Husain *et al.* [5] established usual duality theorems under the hypotheses that $\sum_{i=1}^p \lambda^i \nabla (f^i(\cdot) + (\cdot)^T z^i)$ is pseudoinvex and $\sum_{j=1}^m y^j (g^j(\cdot) + (\cdot)^T w^j)$ is quasi-invex with respect to the same η .

In this paper, we propose in the spirit of Husain and Jabeen [4] and Xu [7], a mixed type dual to (NP) to combine the problems (WND) and (M-WNP) and establish various duality theorems under generalized invexity conditions. Special cases are discussed to show that our results extend some earlier results in the literature.

2. Pre-requisites

Before stating our multiobjective nonlinear problem, we mention the following conventions for vectors x and y in n-dimensional Euclidian space R^n to be used

throughout the analysis of this research.

$$x < y \iff x_i < y_i, \quad i = 1, 2, ..., n.$$

 $x \le y \iff x_i \le y_i, \quad i = 1, 2, ..., n.$
 $x \le y \iff x_i \le y_i, \quad i = 1, 2, ..., n, \text{ but } x \ne y$

 $x \not\leq y$, is the negation of $x \leq y$

For $x, y \in R$, $x \le y$ and x < y have the usual meaning.

Before presenting our mixed type dual (Mix D), we mention some definitions of invexity and generalized invexity for easy reference.

Definition 2.1 (*Invexity*). The function $\phi: R^n \to R$ is said to be invex with respect to η at \bar{x} if there exists a vector function $\eta(x,\bar{x}) \in R^n$, such that for all x and $\bar{x} \in R^n$

$$\phi(x) - \phi(\bar{x}) \ge \eta(x, \bar{x})^T \nabla \phi(\bar{x}).$$

Definition 2.2 (*Pseudoinvex*). The function $\phi: R^n \to R$ is said to be pseudoinvex with respect to η at \bar{x} if there exists a vector function $\eta(x,\bar{x}) \in R^n$, such that for all x and $\bar{x} \in R^n$

$$\eta(x,\bar{x})^T \nabla \phi(\bar{x}) \geq 0$$

implies

$$\phi(x) \ge \phi(\bar{x})$$
.

Definition 2.3 (*Quasi-invex*). The function $\phi: \mathbb{R}^n \to \mathbb{R}$ is said to be quasi-invex with respect to η at \bar{x} if there exists a vector function $\eta(x,\bar{x}) \in \mathbb{R}^n$, such that for all x and $\bar{x} \in \mathbb{R}^n$

$$\phi(x) \leq \phi(\bar{x})$$

implies

$$\eta(x,\bar{x})^T \nabla \phi(\bar{x}) \leq 0$$
.

Definition 2.4 (*Support function*). Let K be a compact set in \mathbb{R}^n , then the support function of K is defined by

$$S(x|K) = \max\{x^T v \in K\}.$$

A support function, being convex everywhere finite, has a subdifferential in the sense of convex analysis. The subdifferential of s(x|K) is given by

$$\partial S(x|K) = \{z \in K | z^T x = S(x|K)\}.$$

For a set K, the normal cone to K at a point $x \in K$ is defines by

$$N_k(x) = \{y | y^T(z - x) \le 0, \text{ for all } z \in K\}.$$

When *K* is a compact convex set, *y* is in $N_k(x)$ if and only if $S(y|K) = x^T y$ i.e., *x* is a subdifferential of *s* at *y*.

Definition 2.5 (*Efficient solution*). A feasible solution \bar{x} is efficient for (NP) if there exist no other feasible x for (VPE) such that for some $i \in P = \{1, 2, ..., p\}$,

$$f^{i}(x) + S(x|C^{i}) < f^{i}(\bar{x}) + S(\bar{x}|C^{i})$$

and

$$f^{j}(x) + S(x|C^{j}) \le f^{j}(\bar{x}) + S(\bar{x}|C^{j})$$
 for all $j \in P, j \neq i$.

In order to prove the strong duality theorem we will invoke the following lemma due to Chankong and Haimes [1]. In the subsequent analysis we shall denote the set of feasible solutions of the problem (NP) by X.

Lemma 2.6. A point $\bar{x} \in X$ is an efficient for (NP), if and only if $\bar{x} \in X$ solves the following problem:

$$(P_k(\bar{x})) \qquad \text{Minimize } f^k(x) + s(S|C^k)$$

$$subject \ to$$

$$f^i(x) + S(x|C^i) \leq f^i(\bar{x}) + S(\bar{x}|C^i) \ \forall \ i \in P$$

$$g^j(x) + S(x|D^j) \leq 0, \quad j = 1, 2, \dots, m.$$

3. Mixed type duality

We formulate the following type dual (Mix D) to (NP):

(Mix D) Maximize
$$\left(f^{1}(u) + u^{T}z^{1} + \sum_{j \in J_{o}} y^{j} (g^{j}(u) + u^{T}w^{j}), \dots, f^{p}(u) + u^{T}z^{p} + \sum_{j \in J_{o}} y^{j} (g^{j}(u) + u^{T}w^{j}) \right)$$

subject to

(1)
$$\sum_{i=1}^{p} \lambda^{i} \nabla (f^{i}(u) + u^{T} z^{i}) + \sum_{i=1}^{m} y^{j} \nabla (g^{j}(u) + u^{T} w^{j}) = 0,$$

(2)
$$\sum_{j \in J_{\alpha}} y^{j}(g^{j}(u) + u^{T}w^{j}) \ge 0, \quad \alpha = 1, 2, \dots, r,$$

(3)
$$z^i \in C^i, \quad i = 1, 2, ..., p,$$

(4)
$$w^j \in D^j, \quad j = 1, 2, \dots, m,$$

$$(5) y \geqq 0,$$

(6)
$$\lambda \in \Lambda$$
,

where
$$\Lambda = \left\{\lambda \in \mathbb{R}^p \middle| \lambda > 0, \sum_{i=1}^p \lambda^i = 1\right\}$$
.

where $J_{\alpha} \subseteq M = \{1, 2, ..., m\}$, $\alpha = 0, 1, 2, ..., r$ with $\bigcup_{\alpha=0}^{r} J_{\alpha} = M$ and $J_{\alpha} \cap J_{\beta} = \phi$, if $\alpha \neq \beta$. If $J_{\circ} = M$, then (Mix D) becomes Wolfe type dual considered in [5], if $J_{\circ} = \phi$ and $J_{\alpha} = M$ for some $\alpha \in \{1, 2, ..., r\}$, then (Mix D) becomes Mond-Weir type dual considered in [5].

 w^m, λ) be feasible for (Mix D). If for all feasible $(x, u, y, z^1, ..., z^p, w^1, ..., w^m, \lambda)$, $\sum_{i=1}^{p} \lambda^{i} \nabla (f^{i}(\cdot) + (\cdot)^{T} z^{i}) + \sum_{j \in J_{o}} y^{j} (g^{j}(\cdot) + (\cdot)^{T} w^{j}) \text{ is pseudoinvex and } \sum_{j \in J_{a}} y^{j} (g^{j}(\cdot) + (\cdot)^{T} w^{j}),$ $\alpha = 1, 2, \dots, r \text{ is quasi-invex with respect to } \eta, \text{ then the following cannot hold.}$

(7)
$$f^{i}(x) + s(x|C^{i}) \le f^{i}(u) + u^{T}z^{i} + \sum_{j \in J_{0}} y^{j}(g^{j}(u) + u^{T}w^{j})$$

for all $i \in \{1, ..., p\}$, and

(8)
$$f^{k}(x) + s(x|C^{k}) < f^{k}(u) + u^{T}z^{k} + \sum_{j \in J_{o}} y^{j}(g^{j}(u) + u^{T}w^{j})$$

for some k.

Proof. Suppose that (7) and (8) hold. Then in view of $\lambda > 0$ and $\sum_{i=1}^{p} \lambda^{i} = 1$, (7) and (8) together with $x^T z^i \leq s(x|C^i)$, i = 1, 2, ..., p and $x^T w^j \leq s(x|D^j)$, j = 1, 2, ..., m and the feasibility for (NP) and (Mix D) imply

$$\sum_{i=1}^{p} \lambda^{i}(f^{i}(x) + x^{T}z^{i}) + \sum_{j \in J_{o}} y^{j}(g^{j}(x) + x^{T}w^{j})$$

$$< \sum_{i=1}^{p} \lambda^{i}(f^{i}(u) + u^{T}z^{i}) + \sum_{j \in J_{o}} y^{j}(g^{j}(u) + u^{T}w^{j})$$

This in view of the pseudoinvexity of

$$\sum_{i=1}^{p} \lambda^{i}(f^{i}(\cdot) + (\cdot)^{T}z^{i}) + \sum_{j \in J_{o}} y^{j}(g^{j}(\cdot) + (\cdot)^{T}w^{j})$$

with respect to η , implies,

(9)
$$\eta^T(x,u) \left(\sum_{i=1}^p \lambda^i \nabla (f^i(u) + u^T z^i) + \sum_{i \in J_c} y^j \nabla (g^j(u) + u^T w^j) \right) < 0$$

Since \bar{x} is feasible for (VP), $(u, y, z^1, \dots, z^p, w^1, \dots, w^m, \lambda)$ is feasible for (Mix D), and $x^T w^j \leq s(x|D^j)$, j = 1, 2, ..., m, we have

$$\sum_{j \in J_{\alpha}} y^{j}(g^{j}(x) + x^{T}w^{j}) \leq \sum_{j \in J_{\alpha}} y^{j}(g^{j}(u) + u^{T}w^{j}), \quad \alpha = 1, 2, \dots, r.$$

This in view of quasi-invexity of $\sum_{j \in J_{\alpha}} y^{j}(g^{j}(\cdot) + (\cdot)^{T}w^{j}), \alpha = 1, 2, ..., r$ with respect to η , gives

$$\eta^T(x,u) \left(\sum_{j \in J_{\alpha}} y^j \nabla (g^j(x) + x^T w^j) \right) \leq 0, \quad \alpha = 1, 2, \dots, r$$

(10)
$$\eta^{T}(x,u)\nabla\left(\sum_{j\in M-J_{o}}y^{j}(g^{j}(x)+x^{T}w^{j})\right) \leq 0, \quad \alpha=1,2,\ldots,r$$

Combining (9) and (10), we have

(11)
$$\eta^{T}(x,u) \left(\sum_{i=1}^{p} \lambda^{i} \nabla (f^{i}(u) + u^{T}z^{i}) + \sum_{j=1}^{m} y^{j} \nabla (g^{j}(u) + u^{T}w^{j}) \right) < 0$$

From the equality constraint of (Mix D), we have

(12)
$$\eta^{T}(x,u) \left(\sum_{i=1}^{p} \lambda^{i} \nabla (f^{i}(u) + u^{T} z^{i}) + \sum_{i=1}^{m} y^{j} \nabla (g^{j}(u) + u^{T} w^{j}) \right) = 0$$

The relation (12) contradicts (11). Hence the conclusion of the theorem is true.

Theorem 3.2 (Strong duality). Let \bar{x} be an efficient solution of (NP) and for at least one $i, i \in \{1, 2, ..., p\}$, \bar{x} satisfies the regularity condition [3] for the problem $(P_k(\bar{x}))$. Then there exist $\lambda \in R^p$ with $\lambda^T = (\bar{\lambda}^1, ..., \bar{\lambda}^i, ..., \bar{\lambda}^p)$, $\bar{y} \in R^m$ with $\bar{y}^T = (\bar{y}^1, ..., \bar{y}^i, ..., \bar{y}^m)$, $z^i \in R^n$, $i = \{1, 2, ..., p\}$ and $w^j \in R^n$, j = 1, 2, ..., m such that $(x, u, y, z^1, ..., z^p, w^1, ..., w^m, \lambda)$ is feasible for (Mix D) and the objectives of (NP) and (Mix D) are equal.

Further, if the hypotheses of Theorem 1 are satisfied, then $(x, u, y, z^1, ..., z^p, w^1, ..., w^m, \lambda)$ is an efficient solution of (Mix D).

Proof. Since \bar{x} is an efficient solution for $(P_k(\bar{x}))$, this implies that there exists $\xi \in R^p$, $v \in R^m$ with $\bar{v}^T = (\bar{v}^1, \dots, \bar{v}^i, \dots, \bar{v}^m)$ and $z^i \in R^n$, $i = \{1, 2, \dots, p\}$ such that

$$\bar{\xi}^k \nabla (f^k(x) + \bar{x}^T \bar{z}^k) + \sum_{\substack{i=1\\i\neq k}}^p \bar{\xi}^i \nabla (f^i(x) + \bar{x}^T \bar{z}^i)$$

(13)
$$+ \sum_{j=1}^{m} y^{j} \nabla (g^{j}(x) + x^{T} w^{j}) = 0,$$

(14)
$$\sum_{j=1}^{m} \bar{v}^{j} \nabla (g^{j}(x) + x^{T} w^{j}) = 0,$$

(15)
$$\bar{x}^T \bar{z}^i = S(\bar{x}|C^i), \quad i = 1, 2, ..., p,$$

(16)
$$\bar{x}^T \bar{w}^j = S(\bar{x}|D^j), \quad j = 1, 2, \dots, m,$$

(17)
$$z^i \in C^i, i = 1, 2, ..., p,$$

(18)
$$w^j \in D^j, \quad j = 1, 2, \dots, m,$$

(19)
$$\xi > 0, \ \bar{v} \ge 0$$

Dividing (13), (14) and (19) by $\sum_{i=1}^{p} \xi^{i} \neq 0$, and putting $\bar{\lambda}^{i} = \frac{\bar{\xi}^{i}}{\sum\limits_{i=1}^{p} \xi^{i}}$ and $\bar{y}^{i} = \frac{\bar{v}^{i}}{\sum\limits_{i=1}^{p} \xi^{i}}$,

we have

(20)
$$\sum_{i=1}^{p} \bar{\lambda}^{i} \nabla (f^{i}(\bar{x}) + \bar{x}^{T} \bar{z}^{i}) + \sum_{i=1}^{m} \bar{y}^{j} \nabla (g^{j}(x) + \bar{x}^{T} \bar{w}^{j}) = 0$$

(21)
$$\sum_{i=1}^{m} \bar{y}^{j} \nabla (g^{j}(x) + \bar{x}^{T} \bar{w}^{j}) = 0$$

(22)
$$\lambda > 0, \sum_{i=1}^{p} \lambda^{i} = 1, \quad \bar{y} \ge 0$$

The equation (21) implies

(23)
$$\sum_{j \in J_{\circ}} \bar{y}^{j}(g^{j}(x) + \bar{x}^{T}\bar{w}^{j}) = 0$$

and

(24)
$$\sum_{j \in J_{\alpha}} \bar{y}^{j}(g^{j}(x) + \bar{x}^{T}\bar{w}^{j}) = 0, \quad \alpha = 1, 2, \dots, r$$

The relation (20), (22) and (24) imply that $(x, u, y, z^1, ..., z^p, w^1, ..., w^m, \lambda)$ is feasible for (Mix D).

$$f^{i}(\bar{x}) + \bar{x}^{T}\bar{z}^{i} + \sum_{j \in L} \bar{y}^{j}(g^{j}(x) + \bar{x}^{T}\bar{w}^{j}) = f^{i}(\bar{x}) + S(\bar{x}|C^{i}), \quad i = 1, 2, \dots, p.$$

This implies the objective of the primal and dual problems are equal.

Further, in view of the assumptions Theorem 1, the efficiency of \bar{x} for (NP) is immediate.

Theorem 3.3 (Converse duality). Let $(\bar{x}, \bar{y}, \bar{z}^1, \dots, \bar{z}^p, \bar{w}^1, \dots, \bar{w}^m, \bar{\lambda})$ be an efficient solution for (Mix D). Assume that

- (A_1) f and g are twice continuously differentiable,
- (A_2) $\nabla f^i(\bar{x}) + \bar{z}^i + \sum_{j \in J_*} \bar{y}^j (\nabla g^j(\bar{x}) + \bar{w}^j)$ are linearly independent,
- $(A_3) \nabla^2 (\lambda^T f^i(\bar{x}) + \bar{y}^T g(\bar{x}))$ is positive or negative definite.

Further, if the assumptions of Theorem 1 are met, then \bar{x} is an efficient solution.

Proof. Since $(\bar{x}, \bar{y}, \bar{z}^1, \dots, \bar{z}^p, \bar{w}^1, \dots, \bar{w}^m, \bar{\lambda})$ be an efficient solution of (Mix D), then there exist $\tau \in R^p$, $\beta \in R^n$, $\gamma \in R$ for each γ constraints, $\eta \in R^p$ with $\eta^T = (\eta^1, \dots, \eta^i, \dots, \eta^p)$ and $\mu \in R^m$ such that the following Fritz-John optimality conditions [2] are satisfied,

$$-\sum_{i=1}^p \tau^i \Bigg(\nabla (f^i(\bar{x}) + \bar{x}^T \bar{z}^i) + \sum_{j \in J_\circ} \bar{y}^j \nabla (g(\bar{x}) + \bar{x}^T \bar{w}^j) \Bigg)$$

(25)
$$+\beta^{T} \nabla^{2} (\lambda^{T} f(\bar{x}) + \bar{y}^{T} g(\bar{x})) - \gamma \sum_{q=1}^{r} \sum_{i \in I} \bar{y}^{j} \nabla (g^{j}(x) + \bar{x}^{T} \bar{w}^{j}) = 0$$

(26)
$$-(\tau^T e)(g^j(\bar{x}) + \bar{x}^T \bar{w}^j + \beta^T \nabla (g^j(\bar{x}) + \bar{x}^T \bar{w}^j)) - \mu^j = 0, \quad j \in J_o$$

(27)
$$-\gamma(g^{j}(\bar{x}) + \bar{x}^{T}\bar{w}^{j} + \beta^{T}\nabla(g^{j}(\bar{x}) + \bar{x}^{T}\bar{w}^{j})) - \mu^{j} = 0, \quad j \in J_{\alpha}, \quad \alpha = 1, \dots, r$$

(28)
$$\beta^{T} \nabla (f(\bar{x}) + \bar{x}^{T} \bar{z}^{i}) + \sum_{j \in J_{\circ}} \bar{y}^{j} (\nabla g^{j}(\bar{x}) + \bar{w}^{j}) - \eta^{i} = 0$$

(29)
$$(\lambda^i \beta - \tau^i \bar{x}) \in N_{C^i}(\bar{z}^i), \quad i = 1, \dots, p$$

(30)
$$(\beta - (\tau^T e)\bar{x})\bar{y}^j \in N_{D^j}(\bar{w}^j), \quad j \in J_{\circ}$$

(31)
$$(\beta - \gamma \bar{x})\bar{y}^j \in N_{D^j}(\bar{w}^j), \quad j \in J_\alpha, \ \alpha = i, \dots, r$$

(32)
$$\mu^T \bar{y} = 0$$

$$(33) \eta^T \lambda = 0$$

(34)
$$\gamma \sum_{j \in J_{\alpha}} \bar{y}^{j} \nabla (g^{j}(\bar{x}) + \bar{x}^{T} \bar{w}^{j}) = 0, \quad \alpha = 1, ..., r$$

$$(35) \quad (\tau, \mu, \eta, \gamma) \ge 0$$

(36)
$$(\tau, \beta, \mu, \eta, \gamma) \neq 0$$

Since $\lambda > 0$, (33) implies $\eta = 0$. Consequently (28) implies

(37)
$$\left(\nabla (f^i(\bar{x}) + \bar{x}^T \bar{z}^i) + \sum_{j \in J_o} \bar{y}^j (\nabla g^j(\bar{x}) + \bar{w}^j) \right) \beta = 0$$

Using the equality constraint of (Mix D) in (25), we have

$$-\sum_{i=1}^{p} (\tau^{i} - \gamma \lambda^{i}) \left(\nabla f^{i}(\bar{x}) + \bar{z}^{i} + \sum_{j \in J_{\circ}} \bar{y}^{T} (\nabla g^{j}(\bar{x}) + \bar{w}^{j}) \right)$$

$$+\beta^{T} \nabla^{2} (\lambda^{T} f(\bar{x}) + \bar{y} g(\bar{x})) = 0$$
(38)

Postmultiplying (38) by β and then using (37), we have

$$\beta^T \nabla^2 (\lambda^T f(\bar{x}) + \bar{y}^T g(x)) \beta = 0$$

This because of (A_3) , yields

(39)
$$\beta = 0$$

Using (39) along with (A_2) , we have

(40)
$$\tau^{i} - \gamma \lambda^{i} = 0, \quad i = 1, 2, ..., p$$

Suppose $\gamma=0$, then from (40) we have $\tau=0$. Consequently we have from (26) and (27), $\mu=0$.

Thus $(\tau, \beta, \mu, \eta, \gamma) = 0$, contradicting (36).

Hence $\gamma > 0$ and $\tau > 0$.

In view of (39), (29), (30) and (31) we have,

(41)
$$\bar{x}^T \bar{z}^i = S(\bar{x}|C^i), \quad i = 1, 2, \dots, p$$

(42)
$$\bar{x}^T \bar{w}^j = S(\bar{x}|D^j), \quad j = 1, 2, ..., m$$

From (26) and (27) along with (42) and (35), we have

$$g^{j}(x) + s(\bar{x}|D^{j}) \leq 0, \quad j = 1, 2, ..., m$$

This implies the feasibility of \bar{x} for (VP).

From (26) and (32), we have

$$\sum_{j \in J_c} \bar{y}^j \nabla (g^j(\bar{x}) + \bar{x}^T \bar{w}^j) = 0$$

In view of this together with (41), we have

$$f^{i}(\bar{x}) + \bar{x}^{T}\bar{z}^{i} + \sum_{j \in J_{0}} \bar{y}^{j}(g^{j}(\bar{x}) + \bar{x}^{T}\bar{w}^{j})^{i} = f^{i}(\bar{x}) + S(\bar{x}|C^{i}), \quad i = 1, 2, \dots, p$$

This establishes the equality of objective values of (NP).

This in view of the hypothesis of Theorem 1 gives the efficiency of \bar{x} for (NP).

4. Special cases

In this section, we specialize our problem (NP) and its mixed dual problems (Mix D). As discussed in [6] we may write $S(x|C^i) = (x^T B^i x)^{\frac{1}{2}}, i = 1,...,p$ and $S(x|D^j) = (x^T E^j x)^{\frac{1}{2}}, j = 1,...,m$ and the matrices B^i , i = 1,...,p and E^j , j = 1,...,m are positive semidefinite. Putting these in our problems, we have

(NP)₁ Minimize
$$(f^{1}(x) + (x^{T}B^{1}x)^{\frac{1}{2}}, ..., f^{p}(x) + (x^{T}B^{p}x)^{\frac{1}{2}})$$

subject to
$$g^{j}(x) + (x^{T}E^{j}x)^{\frac{1}{2}} \leq 0, \quad j = 1, 2, ..., m$$

For the dual (Mix D) problem, we get

$$(\text{Mix D})_1 \qquad \text{Maximize} \bigg(f^1(u) + u^T B^i z^1 + \sum_{j \in J_o} y^j (g^j(u) + u^T E^j w^j) \bigg)$$

$$\bigg(f^p(u) + u^T B^p z^p + \sum_{j \in J_o} y^j (g^j(u) + u^T E^j w^j) \bigg)$$
 subject to
$$\sum_{i=1}^p \lambda^i \nabla (f^i(u) + u^T B^i z^i) + \sum_{j=1}^m y^j (g^j(u) + u^T D^j w^j) = 0,$$

$$\sum_{j \in J_a} y^j (g^j(u) + u^T D^j w^j) \geq 0, \quad \alpha = 1, 2, \dots, r,$$

$$z^T B^i z \leq 1, \quad i = 1, 2, \dots, p,$$

$$(w^j)^T E^j w^j \leq 1, \quad j = 1, 2, \dots, m,$$

$$\lambda > 0, \ y \geq 0.$$

References

- [1] V. Chankong and Y.Y. Haimes, *Multiobjective Decision Making: Theory and Methodology*, North-Holland, New York, 1983.
- [2] B.D. Craven, Lagrangian conditions and quasiduality, *Bulletin of Australian Mathematical Society* **16**(1977), 325–339.
- [3] I. Husain, Abha and Z. Jabeen, On nonlinear programming with support function, *J. Appl. Math. & Computing* **10** (1-2) (2002), 83–99.
- [4] I. Husain and Z. Jabeen, Mixed type duality for a programming problem containing support function, *Journal of Applied Mathematics and Computing* **15** (1-2) (2004), 211–225.
- [5] I. Husain, A. Ahmed and Rumana, G. Mattoo, On multiobjective nonlinear programming with support functions, to appear in *Journal of Applied Analysis*.
- [6] B. Mond and M. Schechter, Nondifferentiable symmetric duality, *Bull. Autral. Math. Soc.* **53** (1996), 177–188.
- [7] Z.Xu, Mixed type duality in multiobjective programming problems, *Journal of Mathematical Analysis and Applications* **198** (1996), 621–635.
- I. Husain, Department of Mathematics, Jaypee University of Engineering and Technology, Guna, Madhya Pradesh, India. E-mail: ihusain11@yahoo.com

A. Ahmed, Department of Statistics, University of Kashmmir, Srinagar, Kashmir, India.

E-mail: aqlstat@yahoo.co.in

Rumana, G. Mattoo, Department of Statistics, University of Kashmir, Srinagar, Kashmir, India.

E-mail: rumana_research@yahoo.co.in

Received August 08, 2009 Accepted October 23, 2009