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1. Introduction
Hyper structure theory was born during the 8th Congress of Scandinavian Mathematicians
in 1934, when F. Marty [16] defined hypergroups, a natural generalization of the concept of
group and began to analyze their properties and applied them to non commutative groups,
algebraic functions etc. Since then various connection between hypergroups and other subjects
of theoretical and applied mathematics have been established. The most important applications
to geometry, topology, cryptography and code theory, graphs and hypergraphs, probability theory,
binary relations, theory of fuzzy sets and rough sets, automata theory are found in [6]. The first
association between binary relation and hyperstructures appeared in [18] J. Nieminen, who
studied hypergroup related to connected simple graphs. In the same direction P. Corsini [2]
worked considering different hyperoperations associated with graphs.
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I. Rosenberg [21] introduced a hyperoperation obtained by a binary relation; the new
hypergroupoid has been investigated by P. Corsini [3], P. Corsini and V. Leoreanu [7] and
recently by I. Cristea and M. Ştefǎnescu [9]. Another approach to the connection between
hypergroups and ordered sets is given by M. Ştefǎnescu [26], and recently hypergroupoids
obtained from n-ary (n ≥ 3) relations has been investigated by I. Cristea and M. Ştefǎnescu [11]
and I. Cristea alone in [10]. In [12], B. Davvaz and T. Vougioklis introduced the concept of n-ary
hypergroups as a generalization of hypergroups in the sense of Marty. In [17], V. Leoreanu
and B. Davvaz introduced and studied the notion of partial n-ary hypergroupoids associated
with a binary relation. The connections between hyperstructures and binary relations have
been analyzed by many researchers such as De Salvo and Lo Fro [13, 14], S. Spartalis [23, 24],
S. Spartalis and C. Mamaloukas [25]. In [22], S.M. Anvariyah and S. Momeni studied the n-ary
hypergroups associated with n-ary relations.
In this paper, we investigate for sufficient condition such that the hypergroupoid obtained in
[10] by Irina Cristea associated with an n-ary (n ≥ 3) relation to be a hypergroup. The reason to
obtain sufficient condition is to determine some relationship between hypergroupoids associated
with two n-ary relations and the hypergroupoids associated with the union, intersection, join
and Cartesian product of two n-ary relations.
The n-ary relations were studied for their applications in theory of dependence space. Moreover,
they used in Database Theory, providing a convenient tool for database modeling. In this
paper, we consider compatibility relation. Compatibility relations are useful in solving certain
minimization problems. It is obvious that the reflexive and symmetric ternary relations are
applicable in spherical geometry.
For a non empty set H , we denote by P∗(H) the set of all non empty subsets of H .
A nonempty set H , endowed with a mapping, called hyperoperation
◦ : H×H →P∗(H) is called a hypergroupoid which satisfies the following conditions:

(i) (x◦ y)◦ z = x◦ (y◦ z), for all x, y, z ∈ H
(ii) x◦H = H = H ◦ x, for all x ∈ H , (reproduction axiom)

is called a hypergroup.
If, for any x, y ∈ H , x◦ y= H , then (H,◦) is called the total hypergroup.
If A and B are nonempty subsets of H , then we denote the set A ◦B = ⋃

a∈A
b∈B

a◦b.

If A and B are nonempty subsets of H , then we denote A/B = ⋃
a∈A
b∈B

a/b.

A commutative hyper groupoid (H,◦) is called a join space if the following implication holds: for
any (a,b, c,d) ∈ H4 ,

a/b∩ c/d 6=φ ⇒ a◦d∩b ◦ c 6=φ (“transposition axiom”)

For more details on hypergroup theory, see [1] and for Hv-groups (see [27]).

2. Properties of the n-ary Relations
In this section we present some basic notions about the n-ary relations defined on a non-empty
set H , n ∈ N a natural number such that n ≥ 3, and ρ ⊆ Hn is an n-ary relation on H .

Journal of Informatics and Mathematical Sciences, Vol. 6, No. 2, pp. 61–76, 2014



On the Hypergroups Associated with n-ary Relations: S. Govindarajan and G. Ramesh 63

Definition 2.1 ([10], [11]). The relation ρ is said to be:

1. reflexive if , for any x ∈ H , the n-tuple (x, . . . , x) ∈ ρ
2. n-transitive if it has the following property: if (x1, . . . , xn) ∈ ρ , (y1, . . . , yn) ∈ ρ hold if there

exist natural numbers i0 > j0 such that 1< i0 ≤ n, 1≤ j0 < n, xi0 = yj0 , then the n-tuple
(xi1 , . . . , xik , yjk+1 , . . . , yjn) ∈ ρ for any natural number 1 ≤ k < n and i1, . . . , ik, jk+1, . . . , jn
such that 1≤ i1 < . . .< ik < i0 , j0 < jk+1 < . . .< jn ≤ n;

3. strongly symmetric if (x1, . . . , xn) ∈ ρ implies (xσ(1), . . . , xσ(n) ∈ ρ for any permutation σ of
the set {1, . . . ,n};

4. n-ary preordering on H if it is reflexive and n-transitive;
5. an n-equivalence on H if it is reflexive, strongly symmetric and n-transitive;
6. compatibility relation if it is reflexive and symmetric.

Remark 2.2. Obviously, all equivalence relations are compatibility relations. We however are
concerned with those compatibility relations which are not n-equivalence relations.

Example 2.3 ([10], [11]). (1) For n = 2, a binary relation is 2 transitive if and only if it
is transitive in the usual sense and therefore it is 2-equivalence if and only if it is an
equivalence in the usual sense.

(2) A ternary relation ρ is 3-transitive if and only if it satisfies the following conditions:

(i) If (x, y, z) ∈ ρ , (y,u,v) ∈ ρ , then (x,u,v) ∈ ρ .
(ii) If (x, y, z) ∈ ρ , (z,u,v) ∈ ρ , then (x, y,u) ∈ ρ , (x, y,v) ∈ ρ , (x,u,v) ∈ ρ , (y,u,v) ∈ ρ .

(iii) If (x, y, z) ∈ ρ , (u, z,v) ∈ ρ , then (x, y,v) ∈ ρ .

Definition 2.4 ([10]). Let ρ be an n-ary relation on a nonempty set H and k < n. The
(i1, . . . , ik)-projection of ρ , denoted by ρ i1,...,ik , is a k-ary relation on H defined by:

if (a1,a2,a3, . . . ,an) ∈ ρ, then (ai1 , . . . ,aik ) ∈ ρ i1,...,ik .

Definition 2.5 ([10]). Let ρ be an m-ary relation on a nonempty set H , λ an n-ary relation
on the same set H . The join of ρ and λ, denoted by Jp(ρ,λ), where 1< p < n, 1< p < m, is an
(m+n− p)-ary relation on H that consist of all (m+n− p)-tuples

(a1, . . . ,am−p, ci, . . . , cp,b1, . . . ,bn−p)

such that

(a1, . . . ,am−p, c1, . . . , cp) ∈ ρ and (c1, . . . , cp,b1, . . . ,bn−p) ∈λ.

Let ρ be a ternary relation on H . The join relation J2(ρ,ρ) denoted by α is a 4-ary relation such
that

(x, y, z, t) ∈ J2(ρ,ρ)⇒ (x, y, z), (y, z, t) ∈ ρ.

We denote the join relation J2(ρ,ρ) by the symbol α.
The projection relations are denoted by α1,2,4 and α1,3,4 .
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3. Hypergroups Associated with n-ary Relations
The hyperproduct associated with the ternary relation is generalized to the case of n-ary relation
(n ≥ 3), using the projection ρ1,i,n by Irina Cristea [10] as follows:
For any i ∈ {2, . . . ,n−1},

x◦i y= {z ∈ H | (x, z, y) ∈ ρ1,i,n} (δ1)

x◦ρ y=
{

z ∈ H | (x, z, y) ∈
n−1⋃
i=2

ρ1,i,n

}

=
{

n−1⋃
i=2

x◦i y

}
(δ2)

The necessary and sufficient conditions for the hypergroupoid (H,◦ρ) to be a quasi hypergroup
and necessary condition for the hypergroupoid (H,◦ρ) to be a semi hypergroup are obtained in
[10]. However, we reproduce them for convenient.

Proposition 3.1 ([10, Proposition 11]). Let ρ be an n-ary relation on H . Then (H,◦ρ) is a quasi
hypergroup if and only if ρ1,n = H ×H , and there exists i, j with 2 ≤ i, j ≤ n−1, such that
ρ1,i = ρ j,n = H×H .

Proof. The reproducibility law means: for any x ∈ H , x◦ρ H = H◦ρ x = H , that is, for any x, y ∈ H ,
there exists t, z ∈ H such that y ∈ x◦ρ z∩ t◦ρ x.
First we suppose that, ρ1,n = H × H , and there exists i, j with 2 ≤ i, j ≤ n − 1, such
that ρ1,i = ρ j,n,= H × H . Then, for any x, y ∈ H , (x, y, z) ∈ ⋃n−1

i=2 ρ1,i,n , and for any t ∈ H ,
(t, y, x) ∈⋃n−1

i=2 ρ1,i,n , it follows that, for any x ∈ H , x◦ρ H = H◦ρ x = H , so it is a quasi hypergroup.
Now we consider (H,◦ρ) is a quasi hypergroup and we suppose that @ i with 2≤ i ≤ n−1 such
that ρ1,i = H×H , then, since ρ1,n = H×H , for any y, z ∈ H , (x, y, z) ∉⋃n−1

i=2 ρ1,i,n ⇒ (x, y,H) ∉ ρ⇒
y ∉ x◦ρ H . Thus x◦ρ H 6= H , this is a contradiction to the reproducibility law. Similarly, @ j with
2≤ j ≤ n−1 such that ρ1, j = H×H , then H ◦ρ x 6= H and again, we obtain a contradiction.

Remark 3.2. If ρ is a symmetric n-ary relation on H such that ρ1,n = H×H . Then (H,◦ρ) is
a quasi hypergroup implies that for any x, y ∈ H , (x, y, x) ∈ ρ1,i,n ⇒ (x, y,H) ∈ ρ1,i,n with 2 ≤ i,
j ≤ n−1.

Proposition 3.3 ([10, Proposition 12]). Let ρ be a an n-ary relation on H such that ρ1,n = H×H .
If ρ is preordering, then (H,◦ρ) is the total hypergroup.

Proof. We have to prove that for any x, y, z ∈ H , z ∈ x◦ρ y. Set x, y, z ∈ H . Since ρ1,n = H×H , ∃
a1,a2, . . . ,an−2 ∈ H , such that (z,a1, . . . ,ak, . . . ,an−2, y) ∈ ρ . By the reflexivity of ρ , and then by
n-transitivity (z, z, . . . , z) ∈ ρ and (z, z, . . . , y) ∈ ρ . Again since ρ1,n = H×H , ∃ b1,b2, . . . ,bn−2 ∈ H ,
such that (x,b1, , . . . ,bn−2, z) ∈ ρ . Using n-transitivity for (z, z, . . . , y) ∈ ρ and (x,b1, . . . ,bn−2, z) ∈ ρ ,
we obtain that (x, z, . . . , y) ∈ ρ . Therefore, z ∈ x◦ρ y.

Proposition 3.4. Let ρ be an n-ary relation H such that ρ1,n = H×H . If ρ is n-ary transitive
and strongly symmetric, then (H,◦ρ) is the total hypergroup.
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Proof. Set x arbitrary in H .
Since ρ1,n = H × H , ∃ a1,a2, . . . ,an−2 ∈ H , such that (x,a1, . . . ,ak, . . . ,an−2, x) ∈ ρ and by the
strongly symmetry it follows that (a1, . . . ,ak, . . . ,an−2, x, x) ∈ ρ .
Using the n-transitivity, (x,a2 . . . ,ak, . . . ,an−2, x, x) ∈ ρ . Again by the symmetry of ρ ,
we obtain that (a2, . . . ,ak, . . . ,an−2, x, x, x) ∈ ρ and therefore, by the n-transitivity, that
(x,a3, . . . ,an−2, x, x, x) ∈ ρ and so on; finally it results that (x, x, . . . , x) ∈ ρ , for any x ∈ H , and
so ρ is reflexive. Also, ρ is n-transitivity, whence ρ is preordering. By the previous proposition,
(H,◦ρ) is the total hypergroup.

Let ρ be a ternary relation on H . We denote the join relation J2(ρ,ρ) by α (see [10]). We recall
that J2(ρ,ρ) is a 4-ary relation such that

(x, y, z, t) ∈ J2(ρ,ρ) ⇒ (x, y, z), (y, z, t) ∈ ρ.

Using the projection of J2(ρ,ρ), necessary condition for a hypergroupoid (H,◦ρ) to be a semi
hypergroup is obtained in [10] as follows.

Proposition 3.5 ([10, Proposition 16]). Let ρ be a reflexive and symmetric ternary relation on
H . If ρ*α1,2,4 or ρ*α1,3,4 , then the hyperoperation “◦ρ ” is not associative.

Corollary 3.6 ([10, Corollary 17]). Let ρ be a reflexive and symmetry ternary relation on H . If
(H,◦ρ) is a semihypergroup, then ρ ⊂α1,2,4 ∩α1,3,4 .
Let ρ be a reflexive and symmetric ternary relation on H such that ρ1,3 = H×H with |H| ≥ 3.
From the following example, we observe that there exists a hypergroup equipped with the product
(δ2) which is different from the total hypergroup or at least one can associate a ternary relation
to a given hypergroupoid (H,◦) such that (H,◦ρ) to be a hypergroup.

Example 3.7. Set H = {x, y, z}. Suppose that ρ be reflexive and symmetric ternary relation
on H and (x, y, z), (x, x, y), (x, x, z), (x, z, z), (y, z, z) ∈ ρ . This ρ satisfies the conditions of a
quasi hypergroup; i.e. ρ1,n = ρ1,2 = ρ2,3 = H×H . Moreover, it is a hypergroup but not the total
hypergroup.

Proposition 3.8 ([10, Proposition 18]). Let ρ be a reflexive and symmetric n-ary relation on H
which satisfies the condition;
(S): (x,a1,a2,a3, . . . ,an−2, y) ∈ ρ ⇔ (x,aσ(1),aσ(2),aσ(3), . . . ,aσ(n−2), y) ∈ ρ for any permutation
σ of the set {1,2 . . . ,n − 2}. If, there exists j ∈ {2, . . . ,n − 1} such that ρ1, j,n 6⊂ α1,n,2n−2 or
ρ1, j,n 6⊂α1,n−12n−2 . Then the hyperoperation “◦ρ ” is not associative.

Let ρ be reflexive and symmetric n-ary relation on H such that ρ1,n = H×H , and there exists i,
j with 2≤ i, j ≤ n−1, such that ρ1,i = ρ j,n = H×H . The condition there exists j ∈ {2, . . . ,n−1}
such that ρ1, j,n ⊂α1,n,2n−2 ∩α1,n−1,2n−2 is necessary condition, but not Sufficient one such that
the hyperoperation is “◦ρ ” is associative, as we can observe from the following examples.

Example 3.9. On the set H = {1,2,3} we consider the n-ary relation: ρ = {(1,1, . . . ,1), (2,2, . . . ,2),
(3,3, . . . ,3), (1,3, , . . . ,3), (1,1, . . . ,3), (2,3, . . . ,3), (2,2, . . . ,3), (1,1, . . . ,2), (1,2, . . . ,1), (2,1,1, . . . ,2)}.
Further, we suppose that ρ is symmetry then clearly ρ1,n = H ×H and j ∈ {2, . . . ,n−1} exists
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such that the condition ρ1, j,n ⊂α1,n,2n−2∩α1,n−1,2n−2 is satisfied, but (2◦ρ1)◦ρ3= {1,3} 6= 1,2,3=
2◦ρ (1◦ρ 3), it follows that “◦ρ ” is not associative.

Example 3.10. On the set H = {1,2,3} we consider the reflexive and symmetric n-ary relation
ρ that contains (1,2, . . . ,1), (1,1, . . . ,2), (1,2, . . . ,2), (1,3, . . . ,3), (1,2, . . . ,3), (1,1, . . . ,3), (2,3, . . . ,3),
(2,2, . . . ,3), (2,3,3, . . . ,2), (2,2, . . . ,3)}. Clearly ρ1,nH×H and for ρ there exists j ∈ {2, . . . ,n−1}
such that the condition ρ1, j,n ⊂α1,n,2n−2∩α1,n−1,2n−2 is satisfied. Moreover, for any x, y, z ∈ H ,
(x◦ρ y)◦ρ z = x◦ρ (y◦ρ z), it follows that “◦ρ ” is associative.
If the following is satisfied in Example 3.9, then (H,◦ρ) is a hyper group.

(i) for any i, j ∈ {2, . . . ,n−1}, (x, z, y) ∈ ρ1,i,n ⇔ (x, z, x) ∈ ρ1,i,n ∧ (y, z, y) ∈ ρ1, j,n (δ3)

However, the following example shows that (δ3) together with the conditions ρ1,n = H×H ,

(ii) there exists i, j with 2 ≤ i, j ≤ n−1, such that ρ1,i = ρ j,n = H ×H are insufficient for a
reflexive and symmetric n-ary relation ρ on a nonempty set H such that (H,◦ρ) is a hyper
group.

Example 3.11. Let H = {1,2,3,4}, ρ be reflexive and symmetric n-ary relations on H .
Let ρ contains the elements (1,2,1,2, . . . ,1,2,1), (1,1,2,3, . . . ,1,2,3,2), (1,1,2,3, . . . ,1,2,3,3),
(1,1,2,4, . . . ,4), (2,2,3, . . . ,2,3,2), (2,2,3, . . . ,2,3,3), (2,2,3,4 . . . ,2,3,4,3), (2,2,4,2,4,4 . . . ,2,4,4)
(2,3,4,3,3,4, . . . ,3,4), (3,3,4,3,3,4, . . . ,3,4). If the condition (S) is satisfied then ρ satisfies the
conditions (i) or (δ3) and (ii), but (H,◦ρ) is not a hypergroup. Since (1◦ρ 4)◦ρ 4 = H 6= 1,2,4 =
1◦ρ (4◦ρ 4).

Proposition 3.12. Let ρ be reflexive and symmetric ternary relation on H such that ρ1,2 =
ρ1,3 = ρ2,3 = H×H . If, ρ is not 3-transitive and ρ ⊂α1,2,4 ∩α1,3,4 ⇒ ∀ (x, y, z) ∈ ρ and ∀ x ∈ H ,
(x, x, y) ∈ ρ , (y, y, x) ∈ ρ , then (H,◦ρ) is a hypergroup different from total hypergroup.

Proof. (H,◦ρ) is a quasihypergroup easily follows from hypothesis. It is remains to check
that “◦ρ is associative. We suppose that ρ ⊂ α1,2,4 ∩α1,3,4 ; thus for any (x, y, z) ∈ ρ , we have
(x, y, z) ∈ α1,2,4∩α1,3,4 . This implies that, there exists a ∈ H such that (x, y,a, z) ∈ J2(ρ,ρ) and
(x,a, y, z) ∈ J2(ρ,ρ). Since

(x, y,a, z) ∈ J2(ρ,ρ)⇒ (x, y,a), (y,a, z) ∈ ρ (*)

and

(x,a, y, z) ∈ J2(ρ,ρ)⇒ (x,a, y), (a, y, z) ∈ ρ, (**)

there exists a ∈ H such that a ∈ xρ y∩ y◦ρ z.
Now, let u ∈ (x◦ρ y)◦ρ z, then there exists v ∈ x◦ρ y, such that u ∈ v◦ρ z.
We suppose that ρ1,2 = ρ1,3 = H×H ; thus for any u ∈ H , there exists t ∈ H and x ∈ H such that
(u, x,u) ∈ ρ and (x,u, t) ∈ ρ . Set t = a in (∗), then for any u ∈ H , there exists t = a ∈ H such that
(x,u,a) ∈ ρ with (y,a, z) ∈ ρ .
Hence,u ∈ x◦ρ (y◦ρ z), whence (x◦ρ y)◦ρ z ⊂ x◦ρ (y◦ρ z).
Next, ∀ (x, y, z) ∈ H3 , we shall verify that (x◦ρ y)◦ρ z ⊇ x◦ρ (y◦ρ z).
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Let u ∈ x◦ρ (y◦ρ z). Then, there exists t ∈ H such that t ∈ y◦ρ z with u ∈ x◦ρ t, that is, (y, t, z) ∈ ρ
with (x,u, t) ∈ ρ . Since ρ1,2 = ρ1,3 = H×H , for any t ∈ H , if there exists (y, t, z) ∈ ρ , then there
exists uz ∈ H such that (t,uz, z) ∈ ρ . Set t = a in (∗∗) and u = uz , it follows that u ∈ (x◦ρ y)◦ρ z,
so (x◦ρ y)◦ρ z ∈ x◦ρ (y◦ρ z).
We justify that u = uz holds good.
Suppose that u 6= uz . Let (x, y,a) ∈ ρ , for y= a, we have (x, y, y) ∈ ρ and from ρ1,2 = ρ1,3 = H×H ,
it follows that (y, x, y) ∈ ρ . This is a contradiction to ρ is not 3-transitive. Thus u ∈ H is the
unique element such that (x,u,u) ∈ ρ .

The following example is an illustration of the above proposition.

Example 3.13. Set H = {1,2,3} and let ρ ⊆ H×H×H be the ternary relation on H defined by
ρ = {(1,1,1), (2,2,2), (3,3,3), (1,2,3),(1,1,2), (1,2,1), (1,1,3), (1,3,3), (2,3,3), (2,1,1), (3,1,1),
(3,3,1), (3,2,1), (3,2,3)}.
This ρ is reflexive and symmetric ternary relation on H which satisfies the conditions
ρ1,2 = ρ1,3 = H×H and ρ =α1,2,4 ∩α1,3,4 . This ρ is not 3-transitive. Because of

(i) (1,2,3) ∈ ρ , (2,2,2) ∈ ρ , but (1,2,2) ∉ ρ
(ii) (1,2,3) ∈ ρ , (3,2,3) ∈ ρ , but (1,2,2) ∉ ρ , (2,2,2) ∉ ρ

(iii) (1,2,3) ∈ ρ , (2,3,2) ∉ ρ such that (1,2,2) ∈ ρ

Further, (H,◦ρ) is a quasi hypergroup and “◦ρ ” is associative, hence it is a hypergroup.
Since x◦ρ y= {

z ∈ H | (x, z, y) ∈⋃n−1
i=2 ρ1,i,n

}
, to prove “◦ρ ” is associative, it is suffices to prove that

for any i, j with 2≤ i, j ≤ n−1, “◦R∪S ” where R and S are the ternary relations R = ρ1,i,n and
S = ρ1, j,n respectively.
We denote the join relations J2(R,R), J2(S,S), J2(R,S), J2(S,R) by α, β, λ and π respectively.
Let R , S be ternary relations satisfying the conditions of Proposition 3.1 and Corollary 3.6.Then
R ∪S is also satisfies the conditions: (R ∪S)1,2 = (R ∪S)1,3 = H × H and (R ∪S)2,3 = H × H ,
so, HR∪S is a hypergroup, but generally, as the following example shows that, HR∪S is not a
hypergroup even if both HR and HS are.

Example 3.14. I. Let H = {a,b, c,d}, H′ = {a, c,d}, H′′ = {a,b,d}

R = {(H, x, x) | x ∈ H}∪ {(x, x,H) | x ∈ H}∪ {(a,b,H′)}∪ {(H′,b,a)},

S = {(H, x, x) | x ∈ H}∪= {(x, x,H) | x ∈ H}∪ {(b, c,H′′)}∪ {(H′′, c,b)}.

Clearly, HR and HS are hypergroups and we have; R ⊃ α1,2,4 ∩α1,3,4 , S ⊂ β1,2,4 ∩β1,3,4 .
But (a◦R∪S d)◦R∪S d = H 6= {a,b,d}= a◦R∪S (d ◦R∪S d).

II. If one supposes (a, c,d) ∈ R∪S for (a,b, c) ∈ R , (b, c,d) ∈ S , then “◦R∪S ” is associative.

III. If one supposes (λ1,2,4 ∩λ1,3,4)∪ (π1,2,4 ∩π1,3,4)∪R∪S ⊂ {(α1,2,4 ∩α1,3,4)∪ (β1,2,4 ∩β1,3,4)}.
Then HR∪S is the total hypergroup.

Remark 3.15. The condition (a, c,d) ∈ R ∪S for (a,b, c) ∈ R , (b, c,d) ∈ S is not necessary for
HR∪S to be a hypergroup but sufficient one as one sees in IV.
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IV. Set H = {1,2,3}, R = {(H, x, x) | x ∈ H}∪ {(x, x,H) | x ∈ H}∪ {(1,2,1), (1,2,3), (3,2,3)}
S = {(H, x, x) | x ∈ H}∪ {(x, x,H) | x ∈ H}∪ {(1,3,2), (2,3,1), ((2,3,2)}.

We have (1,2,3) ∈ R , (2,3,1) ∈ S , (1,3,1) ∉ R∪S , but HR∪S is hypergroup.

Remark 3.16. Neither of R ⊂α1,2,4 ∩α1,3,4 , S ⊂ β1,2,4 ∩β1,3,4 , R and S are reflexive nor both
HR , HS be hypergroups is necessary for HR∪S to be a hypergroup as one sees in V.

V. Set H = {1,2,3}, R = {(1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,1,2), (2,1,3), (2,3,3), (3,3,3)} and
R is symmetry, S = {(1,1,1), (1,3,2), (1,2,3), (1,3,3), (3,3,3), (2,2,3), (2,3,3), (3,2,3), (2,3,2)}
and S is symmetry, so (1,2,3) ∈ R 6⊂ α1,2,4 ∩α1,3,4 (since (1,1,2), (2,2,3) ∉ R ⇒ (1,2,3) ∈
α1,2,4 , but (1,2,3) ∉α1,3,4) and by similarity, (1,2,3) ∈ S 6⊂β1,2,4∩β1,3,4 . It is obvious that R
and S are not reflexive, (R∪S)1,2 = (R∪S)1,3 = H×H and (R∪S)2,3 = H×H , by verification
it shows that “◦R∪S ” is associative, hence HR∪S is a hypergroup.

Proposition 3.17. Let ρ be a reflexive and symmetric ternary relation on H with |H| ≥ 3 such
that ρ1,3 = H×H and ρ1,2 = ρ2,3 = H×H . If the following conditions are satisfied then (H,◦ρ) is
a hypergroup.

(1) ρ ⊂α1,2,4 ∩α1,3,4

(2) if there exist (x, y, z) ∈ ρ such that (x, y, z) ∉α1,2,4 ∩α1,3,4 ⇒ (x, x, y) ∈ ρ , for all x ∈ H

Proof. First of all,we shall check the following equality:

∀ (x, y, z) ∈ H3, x◦ρ (y◦ρ z)= x◦ρ y∪ y◦ρ y∪ y◦ρ z

Case (1): We suppose that (x, y, z) ∈ ρ⇒ (x, y, z) ∈α1,2,4 ∩α1,3,4 .
Now, we verify: u ∈ x◦ρ (y◦ρ z)⇒ u ∈ x◦ρ y∪ y◦ρ y∪ y◦ρ z.
“⇒” There exists v ∈ y◦ρ z, such that u ∈ x◦ρv. Hence (x,u,v) ∈ ρ with (y,v, z) ∈ ρ . Since (x, y, z) ∈
α1,2,4 ∩α1,3,4 ⇒ (x, y, t, z) ∈ J2(ρ,ρ) ⇔ (x, y, t), (y, t, z) ∈ ρ , for t = v, we have (x, y,v), (y,v, z) ∈ ρ ,
whence (x,u,v) ∈ ρ and (x, y,v) ∈ ρ . Next we suppose that ρ1,2 = ρ2,3 = H ×H , then,for any
x,u ∈ H , there exists, y,v ∈ H , such that u ∈ x ◦ρ v∩ x ◦ρ y and for any y, x ∈ H , there exists,
u,v ∈ H , such that y ∈ x◦ρ v∩ x◦ρ u. Therefore from (x,u,v) ∈ ρ , (x, y,v) ∈ ρ and u 6= y it results
(x,u, y) ∈ ρ or (x, y,u) ∈ ρ .
If (x,u, y) ∈ ρ , then u ∈ x◦ρ y.
If (x, y,u) ∈ ρ , then (x, y, z) ∈α1,2,4 ∩α1,3,4 ⇒ (y,u, z) ∈ ρ , whence u ∈ y◦ρ z.
Since ρ is reflexive,we assume without loss of generality (y, x, y) ∉ ρ , for any x, y ∈ H , then it
follows that u = y ∈ y◦ρ y.
Therefore, u ∈ x◦ρ y∪ y◦ρ y∪ y◦ρ z.
“⇐” Suppose u ∈ x ◦ρ y. Then (x,u, y) ∈ ρ . So we have (x,u, y) ∈ ρ and (x, y, z) ∈ ρ . From
(x, y, z) ∈α1,2,4 ∩α1,3,4 , we obtain (u, y, z) ∈ ρ or ∃ t ∈ H such that (x, y, t), (y, t, z) ∈ ρ .
If (u, y, z) ∉ ρ , then (x,u, y) ∈ ρ ⊂α1,2,4 ∩α1,3,4 ⇒ (x,u, y) ∈α1,2,4 ∩α1,3,4 ⇒ there exist t ∈ H such
that (x,u, t) ∈ ρ and (u, t, y) ∈ ρ . From (y, t, z) ∈ ρ , it follows t ∈ y◦ρ z. Therefore u ∈ x◦ρ (y◦ρ z).
Now, suppose u ∈ y ◦ρ y. Since ρ is reflexive and (x, y, z) ∈ ρ , as (y, x, y) ∈ ρ it follows
thatu = y ∈ y◦ρ y⊂ x◦ρ (y◦ρ z).
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Let’s suppose by absurd that there exists a ∈ y ◦ρ z, with y ∈ x ◦ρ a. Then, (y,a, z) ∈ ρ and
(x, y,a) ∈ ρ . Therefore it results that (x, y,a, z) ∉ J2(ρ,ρ) for any a ∈ H , which is a contradiction
with (x, y, z) ∈α1,2,4 ∩α1,3,4 , so u = y ∈ x◦ρ (y◦ρ z).
Finally, suppose u ∈ y◦ρ z. Choose v ∈ H such that (z,v,u) ∈ ρ (this choice is possible because
of ρ1,2 = ρ1,3 = H ×H , for any v ∈ H , ∃ uv, zu ∈ H such that (z,v,u) ∈ ρ , in particular u = v
exist). Again, since ρ1,3 = H×H it follows that (v,u, x) ∈ ρ , and by symmetry of ρ , (x,u,v) ∈ ρ .
Now, we have (z, y,u) ∈ ρ , (z,v,u) ∈ ρ and ρ ⊂ α1,2,4 ∩α1,3,4 , so (z, y,v) ∈ ρ or (z,v, y) ∈ ρ (since
(a, t,b), (a, s,b) ∈ ρ ⊂ α1,2,4 ∩α1,3,4 ⇔ (a, s, t) ∈ ρ∧ (s, t,b) ∈ ρ or (a, t, s) ∈ ρ∧ (t, s,b) ∈ ρ). On the
other hand, (v,u, x) ∈ ρ and so u ∈ x◦ρ (y◦ρ z).
Therefore, ∀ (x, y, z) ∈ H3 ,

x◦ρ (y◦ρ z)= x◦ρ y∪ y◦ρ y∪ y◦ρ z .

Similarly, we prove ∀ (x, y, z) ∈ H3 ,

(x◦ρ y)◦ρ z = x◦ρ y∪ y◦ρ y∪ y◦ρ z.

Case (2): We suppose that (x, y, z) ∈ ρ such that (x, y, z) ∉α1,2,4∩α1,3,4 ⇔ (x, x, y) ∈ ρ , for all x ∈ H .
If u = x ∈ x◦ρ (y◦ρ z), then u = x ∈ x◦ρ y (because (x, x, y) ∈ ρ).
If u = y ∈ x◦ρ (y◦ρ z), then u = y ∈ y◦ρ y (because (y, y, y) ∈ ρ by reflexivity).
If u = z ∈ x◦ρ (y◦ρ z), then u = z ∈ y◦ρ z (because (z, z, y) ∈ ρ , by symmetry (y, z, z) ∈ ρ).
Suppose u 6= x 6= y 6= z. If u ∈ x◦ρ y, then (x,u, y) ∈ ρ and ρ1,3 = H×H ⇒ (u, y, z) ∈ ρ . This shows
that (x, y, z) ∈α1,3,4 . Similarly,if u ∈ y◦ρ z, then we obtain (x, y, z) ∈α1,2,4 which is a contradiction
to the hypothesis.
Therefore, in this case we have,

x◦ρ (y◦ρ z)= x◦ρ y∪ y◦ρ y∪ y◦ρ
= {x, y, z}

= (x◦ρ y)◦ρ z .

This completes the proof.

Corollary 3.18. Let ρ be a reflexive and symmetric ternary relation on H with |H| ≥ 3 such
that ρ1,3 = H×H and ρ1,2 = ρ2,3 = H×H . If

(1) ρ ⊂α1,2,4 ∩α1,3,4 ;
(2) (x, y, z) ∈ ρ , then x, y, z are distinct;
(3) (x, y, x) ∉ ρ , for any x, y ∈ H ;

then the hyperoperation “◦ρ ” is not associative.

Proof. Since ρ1,3 = H × H = ρ1,2 , we have (i) (x, y, z) ∈ ρ ⇒ (y, z, t) ∈ ρ , for some t ∈ H , and
from (x, y, z) ∈α1,2,4 ∩α1,3,4 ; we obtain (ii) if y 6= x and y 6= z, then there exist u ∈ H such that
(x,u, y) ∈ ρ .
Then the proof follows (from [6, Theorem 27, p. 39]).
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Corollary 3.19. Let ρ be a reflexive and symmetric ternary relation on H with |H| ≥ 3 such
that ρ1,3 = H×H and ρ1,2 = ρ2,3 = H×H . If

(1) ρ ⊂α1,2,4 ∩α1,3,4 ;
(2) @ (x, y, z) ∈ ρ such that (x, x, y) ∈ ρ , ∀ (x, y) ∈ H2 ;

then (H,◦ρ) is the total hypergroup.

Proof. We prove that ρ is 3-transitive and then, by Proposition 3.3, it results the conclusion.
Since ρ1,2 = ρ1,3 = H × H , for any x ∈ H , there exists ax, cx ∈ H such that (x,ax, x) ∈ ρ and
(ax, x, cx) ∈ ρ . Again, ρ1,3 = H×H , it follows that there exists ux ∈ H such that (x,ux, cx) ∈ ρ .
We suppose that, @ (x, y, z) ∈ ρ such that (x, x, y) ∈ ρ , that is (x, y, y) ∈ ρ with (x, y, z) ∈ ρ .
Now, we verify the conditions in Example 2.3. Set ux = y= ax , cx = z, then we have (z, y, y) ∈ ρ ,
(y, x, z) ∈ ρ and (az, z, cz) ∈ ρ , for any z ∈ H .

(i) (x, y, z) ∈ ρ , (y, x, z) ∈ ρ⇒ (x, x, z) ∈ ρ (because (y, x, z) ∈ ρ⇒ (x, x, z)).

Since ρ is reflexive and (x, y, z) ∈ α1,2,4 ∩α1,3,4 ⇔ (x, y, y) ∈ ρ∧ (y, y, z) ∈ ρ and by symmetry
(z, y, y) ∈ ρ , it follows that

(ii) (x, y, z) ∈ ρ , (z, y, y) ∈ ρ⇒ (x, y, y) ∈ ρ , (y, y, y) ∈ ρ .

(iii) (x, y, z) ∈ ρ , (x, x, x) ∈ ρ⇒ (x, y, x) ∈ ρ (because ρ is reflexive).

This completes the proof.

Remark 3.20. Obviously, the element, y ∈ H such that (y, x, x) ∈ ρ and ρ is symmetric relation
implies that y acts as scalar identity. That is |x◦ρ y| = 1, ∀ x ∈ H . We denote it by “e”.
Let ρ be a ternary relation on H . Let (H,◦ρ) be the hypergroupoid defined as follows.

∀ x ∈ H x◦ρ x = {x}

∀ (x, y) ∈ H2 x◦ρ y 3 z ⇔ (x, z, y) ∈ ρ,

x◦ρ e = x, ∀ x ∈ H, where e is an ideal element e ∉ H

Let Hρ denote the hypergroupoid associated as in (δ1).

Proposition 3.21. Let ρ be a reflexive and symmetric ternary relation on H with |H| ≥ 3 such
that ρ1,3 = H×H . If there exists (x, z, y) ∈ ρ such that (x, z, y) ∉α1,2,4 ∩α1,3,4 ⇒ the extension of
“◦ρ ” defined by setting

∀ x ∈ H x◦ρ x = {x}

∀ (x, y) ∈ H2 x◦ρ y= {x, y, e}⇔ (x, z = e, y) ∈ ρ,

∀ x ∈ H x◦ρ e = {x},

(that is, if ∃ (x, z, y) ∉α1,2,4 ∩α1,3,4, then z = e)

then (H,◦ρ) is a join space.
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Proof. By the resetting of the product, for any (x, y, z) ∈ ρ , we have, y ∈ H exist such that
(y, x, x) ∈ ρ , for any, x ∈ H , while (x, x, z) ∈ ρ , (x, z, z) ∈ ρ .
Therefore, for any (x, y) ∈ H2 , we have (x, y) ∈ ρ1,2 , and (x, y) ∈ ρ2,3 (by symmetry).
Moreover, ρ is a reflexive relation,hence (x, x) ∈ ρ1,2∩ρ2,3 , whence ρ1,3 = ρ1,2 = ρ2,3 = H×H . It
follows from Proposition prop3.1, that (H,◦ρ) is a quasihypergroup.
Since x ◦ρ y = {x, y, z} where (x, z, y) ∈ ρ and by the symmetry of relation ρ , we obtain that
∀ (x, y) ∈ H2 , x◦ρ y= y◦ρ x = {x, y, z}, hence (H,◦ρ) is commutative.
Now we prove that the hyper operation ◦ρ is associative.
Let u ∈ (x◦ρ y)◦ρ z. Then, there exists v ∈ x◦ρ y such that u ∈ v◦ρ z.
Now, (x,v, y) ∈ ρ with (v,u, z) ∈ ρ , hence x◦ρ y= {x,v, y} and v◦ρ z = {v,u, z}.
We suppose that (x, y, z) ∈ ρ , then we notice that y= e.
Therefore, ∀ (x, y, z) ∈ H3 ,

(x◦ρ y)◦ρ z =∪{x, e, y}◦ρ z

= x◦ρ z∪ e ◦ρ z∪ y◦ρ z

= {x, e, z}∪ {z}∪ {y, z, e}

= {x, e, y, z} .

Similarly we can show that x◦ρ (y◦ρ z)= {x, y, e, z}.
It remains to check the condition of the join space. Set a,b, c,d ∈ H , b = e, then a/b = {a},
a/c = {a}, a/d = {a}, b/b = {b}, c/c = {c}, c/d = {c}, a/a = H , and by symmetry we have
∀ (a,b) ∈ H2 , a/b = a◦ρ c, where c 6= b is such that b ◦ρ c = {b, z, e}.
So, a/b∩ c/d 6=φ⇒ a◦ρ c∩d◦ρ c 6=φ, where d 6= c, whence {a}∩b◦ρ (d◦ρ c), hence a/d∩b◦ρ c 6=φ,
that is a◦ρ d∩b ◦ρ c 6=φ (by [6, Theorem 64.2, p. 12]), vide [3, Theorem 157,2].

Example 3.22. On the set H = {1,2,3}, consider the ternary relation ρ .
We suppose that (1,2,3) ∉ α1,2,4 ∩α1,3,4 but (1,2,3) ∈ ρ . From the product, we have ∀ x ∈ H ,
x◦ρ x = {x}∩ x ∈ x◦ρ x, whence (x, x, x) ∈ ρ , ∀ x ∈ H , hence ρ is reflexive 1◦ρ 3= {1,2,3}⇔ (1,2=
e,3) ∈ ρ , whence 1 ∈ 1 ◦ρ 3 = 3 ◦ρ 1, hence (1,1,3) ∈ ρ and (3,1,1) ∈ ρ . Similarly, (1,2,3) ∈ ρ ,
(3,2,1) ∈ ρ , (1,3,3) ∈ ρ and (3,3,1) ∈ ρ .
Set e = 2, x◦ρ 2= {x}⇒ x ∈ x◦ρ 2= 2◦ρ x, whence (x, x,2) ∈ ρ , (2, x, x) ∈ ρ , ∀ x ∈ H .
Thus the associated ρ is reflexive and symmetry. It is easy to check that ρ1,3 = H ×H and
ρ1,2 = ρ2,3 = H ×H . The associative axiom is obvious from the product. Also,it is a join space
with scalar identity.

Remark 3.23. Given a hypergroupoid (H,◦ρ) associated with a ternary relation ρ , we defined
the ternary relation ρ such that ρ1,3 = H×H and ρ is reflexive and symmetric by adjoining an
ideal element “e”. The extended product satisfies the axioms of a hypergroup. That is, if (H,◦ρ)
is a hypergroup with scalar identity, then a reflexive symmetric relation is associated on H .

Definition 3.24. Let H be hypergroup and K be a nonempty set of H . K is called subhyper-
group of H if for every a ∈ K , a◦K = K ◦a = K . A subhyper-group K of H is called closed on the
left (on the right) if for every x, y in K and for every a in H , from x ∈ a◦ y (x ∈ y◦a) it results
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a ∈ K , K is closed if it is closed on the left and on the right.

Proposition 3.25. Let Hρ be a hypergroup with scalar identity associated with an n-ary
relation ρ with |H| ≥ 3. Then, the n-ary relation ρ is reflexive and symmetric such that
ρ1,n = H×H and satisfies the following.

(1) ρ1, j,n ⊂α1,n,2n−2 ∩α1,n−1,2n−2 , ∀ j ∈ {2, . . . ,n−1}
(2) if there exists j ∈ {2, . . . ,n−1} such that ρ1, j,n 6⊂α1,n,2n−2 or ρ1, j,n 6⊂α1,n−1,2n−2 , then “◦ρ ” is

redefined by setting,

for any i ∈ {2, . . . ,n−1},

∀ x ∈ H, x◦i x = {x}

∀ (x, y) ∈ H2 x◦i y= {x, y, e}⇔ (x, z = e, y) ∈ ρ1,i,n,

∀ x ∈ H x◦i e = {x}

and

(i) ∀ x ∈ H, x◦ρ x =
{

x ∈ H | (x, x, x) ∈
n−1⋃
i=2

ρ1,i,n

}
=

n−1⋃
i=2

x◦i x = {x}

(ii) ∀ (x, y) ∈ H2, x◦ρ y=
{

z ∈ H | (x, z, y) ∈
n−1⋃
i=2

ρ1,i,n

}
∪ {x, y, e}

=
n−1⋃
i=2

x◦i y∪ {x, y, e}

(iii) ∀ x ∈ H x◦i e = {x}=
n−1⋃
i=2

x◦i e

Proof. Reflexivity and symmetric nature of the n-ary relation ρ such that ρ1,n = H×H follows
from Proposition prop3.21. Next, we prove (1). Since (H,◦i), ∀ i ∈ {2, . . . ,n−1} is a subhypergroup
of (H,◦ρ), by Corollary 3.6,the ternary relations λ= ρ(1, i,n)⊂β1,2,4∩β1,3,4 , where β denote the
join relation J2(λ,λ).
Let (a,b,d) ∈ λ= ρ1,i,n ; then ∃ (a,b, c) ∈ λ= ρ1,i,n and (b, c,d) ∈ λ= ρ1,i,n such that (a,b, c,d) ∈
J2(λ,λ).
Similarly, (a, c,b,d) ∈ J2(λ,λ) or ∃ u ∈ H such that (a,u,b,d) ∈ J2(λ,λ). It is not severe
restriction that (a, c,b,d) ∈ J2(λ,λ) and (a, c,d) ∈ λ, since (H,◦i) is satisfies the associative
axiom.
As the above observation for ρ1,i,n is true, for any i ∈ {2, . . . ,n−1}; without loss of generality,
we assume that (a,b,d) ∈ λ = ρ1,i,n , ∀ i ∈ {2, . . . ,n−1}. Since ρ1,n = H ×H , for (a,b,d) ∈ λ =
ρ1,i,n , there exists (a2, . . . ,ai = b, . . . ,an−1) ∈ Hn−2 such that (a,a2, . . . , ai = b︸ ︷︷ ︸

i-th place

, . . . ,an−1,d) ∈ ρ .

Similarly, for (a,b, c) ∈ λ = ρ1,i,n = λ 3 (b, c,d), there exists (b2, . . . ,bi, . . . ,bn−1) ∈ Hn−2 3
(c2, . . . , ci, . . . , cn−1) such that (a,b2, . . . ,bi, . . . ,bn−1 = b, c) ∈ ρ and (b, c = c2, . . . , ci, . . . , cn−1,d) ∈ ρ .
If (a,b,d) ∈ λ= ρ1,i,n , ∀ i ∈ {2, . . . ,n−1}, then the condition (S): (x,a1,a2,a3, . . . ,an−2, y) ∈ ρ⇔
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(x,aσ(1),aσ(2),aσ(3), . . . ,aσ(n−2), y) ∈ ρ for any permutation ρ to the set {1,2 . . . ,n−2} is satisfied
for (a,a2, . . . , ai = b︸ ︷︷ ︸

i-th place

, . . . ,an−1,d) ∈ ρ .

We keep (b, c) as ρn−1,n 3 (b, c) ∈ ρ1,2 while doing this permutation on other elements of ρ ,
otherwise (a,b, c,d) ∉ J2(λ,λ). Now, using the definition of join relation, we obtain that

(a,b2, . . . ,bi, . . . ,bn−1 = b, c = c2, . . . , ci, . . . , cn−1,d) ∈ J2n−2(ρ,ρ)

and by similar argument

(a,b2, . . . ,bi, . . . ,bn−1 = c,b = c2, . . . , ci, . . . , cn−1,d) ∈ J2n−2(ρ,ρ),

whence

ρ1, j,n ⊂ ρ1,n,2n−2 ∩α1,n−1,2n−2, ∀ j ∈ {2, . . . ,n−1}.

This proves (1).
Next, we prove (2). Let (a,b, c) ∈ ρ1,i,n , where i ∈ {2, . . . ,n−1}.
We suppose that ∃, j ∈ {2, . . . ,n−1} such that (a,b, c) ∈ ρ1, j,n and (a,b, c) ∈ ρ1,n,2n−2 ∩ρ1,n−1,2n−2 ,
that is, ρ1, j,n 6⊂ α1,n,2n−2 ∩α1,n−1,2n−2 . With out loss of generality we suppose that ρ1, j,n 6⊂
α1,n,2n−2 ∩∩1,n−1,2n−2 , ∀ j ∈ {2, . . . ,n−1}.
Now,we consider the following cases.

(i) If a 6= b, a 6= c, then (a,b,a) ∈ ρ1, j,n , ∀ j, hence b ∈ a ◦ j a, ∀ j, but by Proposition 3.21
a ∈ a◦ j a for atleast one j ∈ {2, . . . ,n−1}, a contradiction to a 6= b.

Therefore a ∈ a◦ j a, ∀ j ∈ {2, . . . ,n−1}.
If a = b, b 6= c, c 6= e, then (a,a, c) ∈ ρ1, j,n ∀ j, hence a ∈ a ◦ j c, ∀ j. On the other hand (H,◦ j)
∀ j, is a join space with scalar identity “e”, (since each (H,◦ j)⊃ 〈a〉 the least closed subhyper-
group; Hρ is generated by the set X = {a,b, e}, where b is the inverse of a), so it is a canonical
hypergroup, ∃ inverse of “a” say ‘a′ . From a ∈ a◦ j c, we obtain c ∈ a◦ j a′ = {a,a′, e}, it follows that
a = c, a′ = c, c = e, which are contradiction, whence a ∈ a ◦ j a, for all 2 ≤ j ≤ n−1. Therefore,⋃n−1

i=2 x◦i x = {x}, ∀ x ∈ H .

(ii) First of all ,we notice that ∀ (x, y) ∈ H2 , {x, y, e}⊂ Hi ⊂ H j for any i < j.

Now, let x 6= y, x 6= z and (x, z, y) ∈ ρ1,i,n for any i ∈ {2, . . . ,n−1}. Then z ∈ x◦i y.

We suppose that ∃ t ∈ H such that (x, t, y) ∈ ρ1, j,n for any j ∈ {2, . . . ,n−1}, i < j.

Then

x◦i∪ j y= x◦i y∪ x◦ j y= {x, y, e}∪ {z ∈ H | (x, z, y) ∈ ρ1,i,n}

or

x◦i∪ j y= x◦i y∪ x◦ j y= {x, y, e}∪ {t ∈ H | (x, t, y) ∈ ρ1, j,n}.
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⇔ t = e or z = e, for any i < j.
Therefore it is suffices to prove that t = e or z = e, for any i < j and t◦i∪ j z = t, z.
Suppose that t 6= e and z 6= e, then t◦k z = {t, z, e}, for i < j < k, hence e ∈ t◦k z, t ∈ t◦k z, z ∈ t◦k z.
This implies that t is inverse of z, but x◦i y= {x, y, e}, so z = x or z = y as z 6= e, it follows that y
is inverse of z, a contradiction to t is inverse of z, hence z = e. Similarly, we show that t = e, if
z 6= e.
It is remains to check that t◦i∪ j z = {t, z}. Suppose to the contrary t◦i∪ j z = {t, e, z}. Then by the
previous paragraph, we obtain that t = e, if z 6= e and z = e if t 6= e whenever z 6= t and j = i+1.
By induction on j, ∀ (x, y) ∈ H2 ,

x◦ρ y=
{

z ∈ H | (x, z, y) ∈
n−1⋃
i=2

ρ1,i,n

}
∪ {x, y, e}= x◦i y∪ {x, y, e} .

(iii) Finally, we show that ∀ x ∈ H , x◦ j e = {x}, ∀ j ∈ {2, . . . ,n−1}, that is the identity e is scalar
one, and thereby proving that {x}=⋃n−1

i=2 x◦i e. Let x 6= y 6= z and y is inverse of x. Indeed,
we have x ◦ j e ⊃ {x, y, e} for any 2 ≤ j ≤ n−1 which is a subhypergroup with identity e.
Suppose to the contrary e ∈ x◦ j e. Then y ∈ x◦ j e, otherwise x◦ j e = {e}, a contradiction to
Proposition 3.21. Hence y ∈ x◦ j e, whence x ∈ e/y∩ y/e.

Since (H,◦ j) is join space, it follows that e = y which is a contradiction.

Hence (x, x, e) ∈ ρ1, j,n , ∀ j ∈ {2, . . . ,n−1}, therefore ∀ x ∈ Hx◦i e = {x}= x◦i e.
This completes the proof of the proposition.

Finally, we give an example of an infinite join space.

Example 3.26. Set H = {xn, yn, zn, . . . | n ∈ Z+} and let ρ ⊇ H×H×H be the ternary relation on H
defined by ρ = {(x0, y0, z0), (x1, y0, z0), (x0, y1, z0), (x1, y1, z1), (x2, y0, z1), (x0, y2, z1), (x2, y2, z2), . . .,
(xn, yn, zn), (xn+1, y0, zn), (x0, yn+1, zn), (xn+1, yn+1, zn+1), . . .}.
Now, we define u, v, w are functions such that u(x0) = 0, v(y0) = 0 and w(z0) = 1 and
u(xn)=−2n−1 = v(yn), w(zn)= 2n , for n > 0. Then, we define the hyperproduct f as f (x, y, z)=
{u(x)+v(y),0,w(z)}, ∀ (x, y, z) ∈ ρ , where u(x)+v(y) is inverse of w(z).
Also, we remark that the product is defined in the solution space of the equation

f (x, y, z)= 1 at (x0, y0, z0).

It verifies the Proposition 3.21.

4. Conclusion and Future Work
Many connection between hypergroups and ternary relation have been considered and
investigated.In this paper we considered,a joinspace and we associated it to a particular ternary
relation.We generalised it to the case of n-ary relation.
The operations on databases (such union, intersection, cartesian product, projection, join) can
be extended to similar operations on n-ary relation. In a future work we try to obtain some
relations ships between the hypergroupoids associated with the two n-ary relations and the
hypergroupoids associated with their union intersection, join, cartesian product.
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