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1. Introduction
In the past two decades, there has been much interest in studying max-type difference equations.
For example, see [1–23] and the references cited therein. Our main aim in this paper is to
investigate the boundedness nature of positive solutions of the following max-type difference
equation

xn+1 =max
{

An

xn
,

Bn

xn−3

}
, n = 0,1, · · · , (1.1)

where {An}∞n=0 and {Bn}∞n=0 are two periodic sequences of positive real numbers with prime
periods l and m respectively, namely,

An+l = An, Bn+m = Bn, n = 0,1, · · · ,
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and the initial values x−3 , x−2 , x−1 and x0 are arbitrary positive real numbers. It is easy to see
that every solution {xn}∞n=−3 of (1.1) is a positive sequence.

With respect to the investigations for such max-type difference equation, there are not
only theoretical meaningful, but also practical applications. In practice, one finds that the
max operator arises in certain models in automatic control theory, for example, see [24, 25].
Theoretically, one wants to know what the affections of delays and periodicity of coefficients
to properties of solutions are on earth. For the theoretical studies to the boundedness and
periodicity of such kind of equations, there has been some known work. Let us simply recall
some brief history for such investigations of max-type difference equations. For the periodicity
of the following particular max-type difference equation

xn+1 =max
{

An

xn
,

Bn

xn−1

}
, n = 0,1, · · · , (1.2)

where the initial conditions x−1 and x−0 are arbitrary positive real numbers, the authors in [1]
first studied the case where An = 1 for all n ≥ 0 and {Bn}∞n=0 is a periodic sequence with minimal
period 2 and showed that every positive solution of (1.2) becomes eventually periodic. The
case where An = 1 for all n ≥ 0 and {Bn}∞n=0 is a periodic sequence with minimal period 3 was
investigated in [2] and it was also shown that every solution of (1.2) becomes eventually periodic.

For the boundedness of (1.2), under the condition that An = 1 for all n ≥ 0 and {Bn}∞n=0 is a
periodic sequence with minimal period 3, the authors [3] proved that every positive solution of
(1.2) is unbounded if and only if

Bi+1 < 1< Bi, for some i ∈ {0,1,2}.

The authors, in [4], however, derived that every positive solutions of (1.2) is unbounded under
this condition that {An}∞n=0 is a periodic sequence of positive real numbers with minimal period
p with p ∈ {1,2, · · · } and {Bn}∞n=0 is also periodic with minimal period 3k for k = 1,2, · · · such that

B1+i+3 j <min{A0, A1, · · · , Ap−1}≤max{A0, A1, · · · , Ap−1}< Bi+3 j

for some i ∈ {0,1,2} and for all j ∈ {0,1, · · · ,k−1}.
In [5], the max-type difference equation

xn+1 =max
{

An

xn
,

Bn

xn−2

}
, n = 0,1, · · · , (1.3)

was proposed to study by Kerbert and Radin, and they found that every positive solution of (1.3)
is unbounded when {An}∞n=0 is periodic with period p and {Bn}∞n=0 is a sequence of positive real
numbers that is periodic with minimal period 4k for k = 1,2, · · · such that

B1+i+4 j <min{A0, A1, · · · , Ap−1}≤max{A0, A1, · · · , Ap−1}< Bi+4 j

for some i ∈ {0,1,2,3} and for all j ∈ {0,1, · · · ,k−1}.
In addition, the work [6–22] also demonstrates that the investigations for max-type

difference equations are interesting to many authors. So, inspired by the above work, along
this line, our main aim in this paper is to consider the boundedness nature for the positive
solutions of the max-type difference equation (1.1). Some sufficient conditions are obtained for
every positive solution of (1.1) to be bounded and unbounded respectively.
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For the sake of convenience of statement, for nonnegative integers a and b, denote

N(a)= {a,a+1, · · · } and N(a,b)= {a,a+1, · · · ,b} for a ≤ b.

For a periodic sequence {yn}∞n=0 with minimal period p ∈ N(1), put

my,p =min{y0, y1, · · · , yp−1} and My,p =max{y0, y1, · · · , yp−1}.

In this paper, one mainly considers the following three cases of periodic sequences {An}∞n=0 and
{Bn}∞n=0 with prime periods l and m respectively:

(i) l ∈ N(1) and m = 5;

(ii) l ∈ N(1) and m = 10;

(iii) l ∈ N(1) and m = 5k, k = 3,4, · · · .
As for the case: m ∈ N(1) and l = 5k, k = 1,2,3,4, · · · , the ways and methods used are completely
similar and will be omitted here.

2. l ∈ N(1) and m = 5
In this section it is assumed that {Bn}∞n=0 is a positive periodic sequence with minimal period 5,
and that for some i ∈ N(0,4),

Bi+1 < mA,l ≤ MA,l < Bi. (2.1)

It will be shown that every positive solution of (1.1) is unbounded under the condition (2.1).
One first establishes some useful lemmas. In particular, the next five lemmas will show that
every positive solution of (1.1) is unbounded at every case, where the solution will consist of
subsequences, some of which converge to 0 and some of which diverge to infinity.
Lemma 2.1. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B4 < mA,l ≤ MA,l < B3,

then

lim
n→∞x5n = 0 and lim

n→∞x5n+1 = lim
n→∞x5n+4 =+∞.

Proof. According to (1.1) and the rule of iteration and properties of maximum and minimum for
function, one can see

x5n+5 =max
{

A5n+4

x5n+4
,
B5n+4

x5n+1

}

=max

 A5n+4

max
{

A5n+3
x5n+3

, B5n+3
x5n

} ,
B5n+4

max
{

A5n
x5n

, B5n
x5n−3

}


=max
{

min
{

A5n+4x5n+3

A5n+3
,

A5n+4x5n

B5n+3

}
,min

{
B5n+4x5n

A5n
,
B5n+4x5n−3

B5n

}}
.

Now consider the following four cases.

Journal of Informatics and Mathematical Sciences, Vol. 6, No. 1, pp. 1–21, 2014



4 Boundedness of a Max-type Fourth Order Difference Equation with Periodic Coefficients: D. Chen and C. Wang

Case 1: min
{

A5n+4x5n+3

A5n+3
,

A5n+4x5n

B5n+3

}
= A5n+4x5n+3

A5n+3
≤ A5n+4x5n

B5n+3
≤ MA,l

B3
x5n.

Case 2: min
{

A5n+4x5n+3

A5n+3
,

A5n+4x5n

B5n+3

}
= A5n+4x5n

B5n+3
≤ MA,l

B3
x5n.

Case 3: min
{

B5n+4x5n

A5n
,
B5n+4x5n−3

B5n

}
= B5n+4x5n

A5n
≤ B4

mA,l
x5n.

Case 4: min
{

B5n+4x5n

A5n
,
B5n+4x5n−3

B5n

}
= B5n+4x5n−3

B5n
≤ B5n+4x5n

A5n
≤ B4

mA,l
x5n.

Throughout the Cases 1-4, let

M =max
{MA,l

B3
,

B4

mA,l

}
.

Then, by the known assumption and synthesizing the above cases, one sees that

M < 1 and x5n+5 ≤ Mx5n ≤ ·· · ≤ Mn+1x0.

It follows from 0< x5n+5 ≤ Mn+1x0 → 0 that

lim
n→∞x5n = lim

n→∞x5n+5 = 0.

Also note that for all n ≥ 0,

x5n+6 =max
{

A5n+5

x5n+5
,
B5n+5

x5n+2

}
≥ A5n+5

x5n+5
→+∞,

thus

lim
n→∞x5n+1 = lim

n→∞x5n+6 =+∞.

In addition, notice that

x5n+9 =max
{

A5n+8

x5n+8
,
B5n+8

x5n+5

}
≥ B5n+8

x5n+5
→+∞,

then

lim
n→∞x5n+4 = lim

n→∞x5n+9 =+∞.

Therefore, the proof is over.

The following Lemmas 2.2–2.5 may be derived, whose proofs are similar to the proof of
Lemma 2.1 and will be omitted.

Lemma 2.2. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B3 < mA,l ≤ MA,l < B2,

then

lim
n→∞x5n+4 = 0 and lim

n→∞x5n = lim
n→∞x5n+3 =+∞.
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Lemma 2.3. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B2 < mA,l ≤ MA,l < B1,

then

lim
n→∞x5n+3 = 0 and lim

n→∞x5n+2 = lim
n→∞x5n+4 =+∞.

Lemma 2.4. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B1 < mA,l ≤ MA,l < B0,

then

lim
n→∞x5n+2 = 0 and lim

n→∞x5n+1 = lim
n→∞x5n+3 =+∞.

Lemma 2.5. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B5 < mA,l ≤ MA,l < B4,

then

lim
n→∞x5n+1 = 0 and lim

n→∞x5n = lim
n→∞x5n+2 =+∞.

Combining the above Lemmas 2.1–2.5, one can derive the following results.

Lemma 2.6. Let {xn}∞n=−3 be a solution of (1.1). Suppose that, for some i ∈ N(0,4),

Bi+1 < mA,l ≤ MA,l < Bi.

Then

lim
n→∞x5n+i+2 = 0 and lim

n→∞x5n+i+1 = lim
n→∞x5n++i+3 =+∞,

which means {xn}∞n=−3 is unbounded.

Proof. The proof follows from Lemmas 2.1–2.5 and will be omitted.

Remark 2.1. Note that if (2.1) does not hold for all i ∈ N(0,4), then every positive solution of
(1.1) is bounded and eventually becomes periodic.

3. l ∈ N(1) and m = 10
In this section one assumes that {Bn}∞n=0 is a positive periodic sequence with minimal period 10
and that, for some i ∈ N(0,4), one of the following conditions holds:

Bi+1 < mA,l ≤ MA,l < Bi and Bi+6 < mA,l ≤ MA,l < Bi+5, (3.1)

Bi+1 < mA,l ≤ MA,l < Bi and Bi+6 ≤ mA,l ≤ MA,l ≤ Bi+5, (3.2)

Bi+1 ≤ mA,l ≤ MA,l ≤ Bi and Bi+6 < mA,l ≤ MA,l < Bi+5. (3.3)

It will be shown that every positive solution of (1.1) is unbounded provided that either (3.1), (3.2),
or (3.3) is true. Let’s first establish some useful lemmas, which will show that every positive
solution of (1.1) is unbounded in each case where the solution will consist of subsequences, some
of which converge to 0 and some of which diverge to infinity.
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Lemma 3.1. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B4 < mA,l ≤ MA,l < B3 and B9 < mA,l ≤ MA,l < B8,

then

lim
n→∞x5n = 0 and lim

n→∞x5n+1 = lim
n→∞x5n+4 =+∞.

Proof. In view of (1.1) and the rule of iteration and properties of maximum and minimum for
function, one obtains

x10n+5 =max
{

A10n+4

x10n+4
,
B10n+4

x10n+1

}

=max

 A10n+4

max
{

A10n+3
x10n+3

, B10n+3
x10n

} ,
B10n+4

max
{

A10n
x10n

, B10n
x10n−3

}


=max
{

min
{

A10n+4x10n+3

A10n+3
,

A10n+4x10n

B10n+3

}
,min

{
B10n+4x10n

A10n
,
B10n+4x10n−3

B10n

}}
.

As in Lemma 2.1, consider the following four cases.

Case 1: min
{

A10n+4x10n+3

A10n+3
,

A10n+4x10n

B10n+3

}
= A10n+4x10n+3

A10n+3
≤ A10n+4x10n

B10n+3
≤ MA,l

B3
x10n.

Case 2: min
{

A10n+4x10n+3

A10n+3
,

A10n+4x10n

B10n+3

}
= A10n+4x10n

B10n+3
≤ MA,l

B3
x10n.

Case 3: min
{

B10n+4x10n

A10n
,
B10n+4x10n−3

B10n

}
= B10n+4x10n

A10n
≤ B4

mA,l
x10n.

Case 4: min
{

B10n+4x10n

A10n
,
B10n+4x10n−3

B10n

}
= B10n+4x10n−3

B10n
≤ B10n+4x10n

A10n
≤ B4

mA,l
x10n.

Also notice that

x10n+10 =max
{

A10n+9

x10n+9
,
B10n+9

x10n+6

}

=max

 A10n+9

max
{

A10n+8
x10n+8

, B10n+8
x10n+5

} ,
B10n+9

max
{

A10n+5
x10n+5

, B10n+5
x10n+2

}


=max
{

min
{

A10n+9x10n+8

A10n+8
,

A10n+9x10n+5

B10n+8

}
,min

{
B10n+9x10n+5

A10n+5
,
B10n+9x10n+2

B10n+5

}}
.

As in Lemma 2.1, further consider the following four cases.

Case 5: min
{

A10n+9x10n+8

A10n+8
,

A10n+9x10n+5

B10n+8

}
= A10n+9x10n+8

A10n+8
≤ A10n+9x10n+5

B10n+8
≤ MA,l

B8
x10n+5.
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Case 6: min
{

A10n+9x10n+8

A10n+8
,

A10n+9x10n+5

B10n+8

}
= A10n+9x10n+5

B10n+8
≤ MA,l

B8
x10n+5.

Case 7: min
{

B10n+9x10n+5

A10n+5
,
B10n+9x10n+2

B10n+5

}
= B10n+9x10n+5

A10n+5
≤ B9

mA,l
x10n+5.

Case 8: min
{

B10n+9x10n+5

A10n+5
,
B10n+9x10n+2

B10n+5

}
= B10n+9x10n+2

B10n+5
≤ B10n+9x10n+5

A10n+5
≤ B9

mA,l
x10n+5.

Let

M =max
{MA,l

B3
,

B4

mA,l
,
MA,l

B8
,

B9

mA,l

}
.

Then, by the known assumption, one can see M < 1. Combining the above 8 cases, one has

x10n+5 ≤ Mx10n

and

x10n+10 ≤ Mx10n+5.

Hence

x10(n+1)+5 ≤ Mx10(n+1) ≤ M2x10n+5 ≤ ·· · ≤ M2(n+1)x5

and

x10(n+1) ≤ Mx10n+5 ≤ M2x10n ≤ ·· · ≤ M2(n+1)x0.

In view of 0< x10(n+1)+5 ≤ M2(n+1)x5 → 0 and 0< x10n+10 ≤ M2(n+1)x0 → 0, one has

lim
n→∞x10n = 0 and lim

n→∞x10n+5 = 0,

which indicates

lim
n→∞x5n = 0.

Again, for all n ≥ 0,

x5n+1 =max
{

A5n

x5n
,

B5n

x5n−3

}
≥ A5n

x5n
→+∞.

Thus

lim
n→∞x5n+1 =+∞.

In addition, noticing that

x5n+4 =max
{

A5n+3

x5n+3
,
B5n+3

x5n

}
≥ B5n+3

x5n
→+∞,

one has,

lim
n→∞x5n+4 =+∞.

Similar to the proof of Lemma 3.1, one can derive the following Lemmas 3.2–3.5.
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Lemma 3.2. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B3 < mA,l ≤ MA,l < B2 and B8 < mA,l ≤ MA,l < B7,

then

lim
n→∞x5n+4 = 0 and lim

n→∞x5n = lim
n→∞x5n+3 =+∞.

Lemma 3.3. Let {xn}∞n=−3 be a solution of (1.1). Assume that

B2 < mA,l ≤ MA,l < B1 and B7 < mA,l ≤ MA,l < B6.

Then

lim
n→∞x5n+3 = 0 and lim

n→∞x5n+4 = lim
n→∞x5n+3 =+∞.

Lemma 3.4. Let {xn}∞n=−3 be a solution of (1.1). Then the conditions

B1 < mA,l ≤ MA,l < B0 and B6 < mA,l ≤ MA,l < B5

imply

lim
n→∞x5n+2 = 0 and lim

n→∞x5n+3 = lim
n→∞x5n+1 =+∞.

Lemma 3.5. Let {xn}∞n=−3 be a solution of (1.1). Then the conditions

B5 < mA,l ≤ MA,l < B4 and B10 < mA,l ≤ MA,l < B9

indicate

lim
n→∞x5n+1 = 0 and lim

n→∞x5n+2 = lim
n→∞x5n =+∞.

Combining the above Lemmas 3.1–3.5, the following first main consequence in this section
may be immediately derived.

Theorem 3.1. Let {xn}∞n=−3 be a solution of (1.1). Suppose that for some i ∈ N(0,4),

Bi+1 < mA,l ≤ MA,l < Bi and Bi+6mA,l ≤ MA,l < Bi+5,

then

lim
n→∞x5n+i+2 = 0 and lim

n→∞x5n+i+3 = lim
n→∞x5n+i+6 =+∞.

In the next five lemmas one will assume that, for some i ∈ N(0,4), one of the following two
conditions is valid:
namely, either

Bi+1 < mA,l ≤ MA,l < Bi and Bi+6 ≤ mA,l ≤ MA,l ≤ Bi+5,

or

Bi+1 ≤ mA,l ≤ MA,l ≤ Bi and Bi+6 < mA,l ≤ MA,l < Bi+5.
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Lemma 3.6. Let {xn}∞n=−3 be a solution of (1.1). Suppose that either

B4 < mA,l ≤ MA,l < B3 and B9 ≤ mA,l ≤ MA,l ≤ B8 (3.4)

or

B4 ≤ mA,l ≤ MA,l ≤ B3 and B9 < mA,l ≤ MA,l < B8. (3.5)

Then

lim
n→∞x10n = lim

n→∞x10n+5 = 0

and

lim
n→∞x10n+1 = lim

n→∞x10n+4 = lim
n→∞x10n+6 = lim

n→∞x10n+9 =+∞.

Moreover, for
p∏

i=1
K i > 1(< 1), where, Kn = A10n+2 A10n+7

B1B6
, lim

n→∞x10n+8 =+∞(0),

lim
n→∞x10n+2 = lim

n→∞x10n+7 = 0(+∞), and lim
n→∞x10n+3 = lim

n→∞x10n+8 =+∞(0).

For
p∏

i=1
K i = 1, {x10n+8}∞n=0 , {x10n+2}∞n=0 , {x10n+3}∞n=0 and {x10n+7}∞n=0 are all p-periodic sequences.

Proof. It suffices to consider the case where (3.4) is true. The proof for the case (3.5) is similar
and will be omitted.

As in Lemma 2.1 and 3.1, Put M = max
{

B4
mA,l

, MA,l
B3

}
. According to the assumption (3.4),

M < 1. From the inequalities above and the periodicity of {Bn}∞n=0 with period 10, it follows by
induction that, for all n ≥ 0,

x10n+10 ≤ Mx10n+5 ≤ M2x10n ≤ ·· · ≤ M2(n+1)x0 → 0. (3.6)

Therefore,

lim
n→∞x10n = lim

n→∞x10n+10 = 0.

Accordingly, still by (3.6), one has

lim
n→∞x10n+5 = 0.

Because of

x10n+11 =max
{

A10n+10

x10n+10
,
B10n+10

x10n+7

}
≥ A10n+10

x10n+10
→+∞,

lim
n→∞x10n+1 = lim

n→∞x10n+11 =+∞.

In addition, noticing that

x10n+14 =max
{

A10n+13

x10n+13
,
B10n+13

x10n+10

}
≥ B10n+13

x10n+10
→+∞
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and

x10n+6 =max
{

A10n+5

x10n+5
,
B10n+5

x10n+2

}
≥ A10n+5

x10n+5
→+∞,

one has

lim
n→∞x10n+4 = lim

n→∞x10n+14 =+∞ and lim
n→∞x10n+6 =+∞.

Also, note that

x10n+9 =max
{

A10n+8

x10n+8
,
B10n+8

x10n+5

}
≥ B10n+8

x10n+5
→+∞.

So,

lim
n→∞x10n+9 =+∞.

As for {x10n+2}∞n=0 , {x10n+3}∞n=0 , {x10n+7}∞n=0 and {x10n+8}∞n=0 , noticing for all n ≥ 0,

x10n+2 =max
{

A10n+1

x10n+1
,
B10n+1

x10n−2

}
, x10n+3 =max

{
A10n+2

x10n+2
,
B10n+2

x10n−1

}
,

x10n+7 =max
{

A10n+6

x10n+6
,
B10n+6

x10n+3

}
, x10n+8 =max

{
A10n+7

x10n+7
,
B10n+7

x10n+4

}
,

One has eventually

x10n+2 = B10n+1

x10n−2
= B1

x10n−2
, x10n+3 = A10n+2

x10n+2
= A10n+2x10n−2

B1
,

x10n+7 = B10n+6

x10n+3
= B1B6

A10n+2x10n−2
, x10n+8 = A10n+7

x10n+7
= A10n+2A10n+7

B1B6
x10n−2.

Denote Kn = A10n+2 A10n+7
B1B6

. Then {Kn} is a periodic sequence with period p and

x10n+8 = Knx10(n−1)+8 = ·· · =
(

n∏
i=1

K i

)
x8.

So, for
p∏

i=1
K i > 1(< 1), lim

n→∞x10n+8 =+∞(0). Correspondingly,

lim
n→∞x10n+2 = lim

n→∞x10n+7 = 0(+∞)

and

lim
n→∞x10n+3 = lim

n→∞x10n+8 =+∞(0).

For
p∏

i=1
K i = 1,

x10(n+p)+8 =
(

n+p∏
i=1

K i

)
x8 =

(
n∏

i=1
K i

)
x8 = x10n+8.

Namely, {x10n+8}∞n=0 is a p-period sequence. Thereout, so are {x10n+2}∞n=0 , {x10n+3}∞n=0 and
{x10n+7}∞n=0 .
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Analogously, one can obtain the following results.

Lemma 3.7. Let {xn}∞n=−3 be a solution of (1.1). Suppose that either

B3 < mA,l ≤ MA,l < B2 and B8 ≤ mA,l ≤ MA,l ≤ B7

or

B3 ≤ mA,l ≤ MA,l ≤ B2 and B8 < mA,l ≤ MA,l < B7.

Then

lim
n→∞x10n+9 = lim

n→∞x10n+4 = 0

and

lim
n→∞x10n = lim

n→∞x10n+3 = lim
n→∞x10n+5 = lim

n→∞x10n+8 =+∞.

Lemma 3.8. Let {xn}∞n=−3 be a solution of (1.1). Assume that either

B2 < mA,l ≤ MA,l < B1 and B7 ≤ mA,l ≤ MA,l ≤ B6

or

B2 ≤ mA,l ≤ MA,l ≤ B1 and B7 < mA,l ≤ MA,l < B6

Then

lim
n→∞x10n+8 = lim

n→∞x10n+3 = 0

and

lim
n→∞x10n+9 = lim

n→∞x10n+2 = lim
n→∞x10n+4 = lim

n→∞x10n+7 =+∞.

Lemma 3.9. Let {xn}∞n=−3 be a solution of (1.1). Suppose that either

B1 < mA,l ≤ MA,l < B0 and B6 ≤ mA,l ≤ MA,l ≤ B5

or

B1 ≤ mA,l ≤ MA,l ≤ B0 and B6 < mA,l ≤ MA,l < B5,

then

lim
n→∞x10n+7 = lim

n→∞x10n+2 = 0

and

lim
n→∞x10n+8 = lim

n→∞x10n+1 = lim
n→∞x10n+3 = lim

n→∞x10n+6 =+∞.
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Lemma 3.10. Let {xn}∞n=−3 be a solution of (1.1). The assumption that either

B5 < mA,l ≤ MA,l < B4 and B10 ≤ mA,l ≤ MA,l ≤ B9

or

B4 ≤ mA,l ≤ MA,l ≤ B3 and B9 < mA,l ≤ MA,l < B8

ensures

lim
n→∞x10n+6 = lim

n→∞x10n+1 = 0

and

lim
n→∞x10n+2 = lim

n→∞x10n+5 = lim
n→∞x10n+7 = lim

n→∞x10n =+∞.

Synthesizing the above Lemmas 3.6–3.10, one gets the second main result in this section.

Theorem 3.2. Let {xn}∞n=−3 be a solution of (1.1). Suppose that for some i ∈ N(0,4), either

Bi+1 < mA,l ≤ MA,l < Bi and Bi+6 ≤ mA,l ≤ MA,l ≤ Bi+5

or

Bi+1 ≤ mA,l ≤ MA,l ≤ Bi and Bi+6 < mA,l ≤ MA,l < Bi+5.

Then

lim
n→∞x10n+i+7 = lim

n→∞x10n+i+2 = 0

and

lim
n→∞x10n+i+8 = lim

n→∞x10n+i+1 = lim
n→∞x10n+i+3 = lim

n→∞x10n+i+6 =+∞.

Proof. The proof follows from Lemmas 3.6–3.10 and will be omitted.

The following boundedness conclusion is then direct.

Theorem 3.3. If (3.1), (3.2) and (3.3) are not true for all i ∈ N(0,4), then every positive solution
of (1.1) is bounded and becomes eventually periodic.

4. l ∈ N(1) and m = 5k for k = 3,4,5, · · ·
In this section one assumes that {Bn}∞n=0 is a positive periodic sequence with minimal period 5k
for k = 3,4,5, · · · and that for some i ∈ N(0,4), one of the following two conditions holds:

(i) For all j ∈ {0,5,10, · · · ,5k−5}, Bi+1+ j < mA,l ≤ MA,l < Bi+ j.

(ii) There exists a j ∈ {0,5,10, · · · ,5k−5} such that Bi+1+ j < mA,l ≤ MA,l < Bi+ j and for all
t ∈ {0,5,10, · · · ,5k−5} with t 6= j, Bt+1+i ≤ mA,l ≤ MA,l ≤ Bt+i.

It will be verified that every positive solution of (1.1) is unbounded provided that either (i)
or (ii) holds. First formulate the following Lemma 4.1.
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Lemma 4.1. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B5 < mA,l ≤ MA,l ≤ B4,B10 < mA,l ≤ MA,l < B9, · · · ,B5+5(k−1) < mA,l ≤ MA,l < B5(k−1)+4.

Then

lim
n→∞x5kn+6 = 0 and lim

n→∞x5kn+7 = lim
n→∞x5kn+5 =+∞.

Proof. As in Lemma 2.1, set

M =max
{MA,l

B4
,
MA,l

B9
, · · · ,

MA,l

5(k−1)+4
,

B5

mA,l
,

B10

mA,l
, · · · ,

B5(k−1)+5

mA,l

}
.

Then, M < 1. For any r ∈ {0,1, · · · ,k−1},

x5kn+5(r+1)+1 =max
{

A5kn+5(r+1)

x5kn+5(r+1)
,

B5kn+5(r+1)

x5kn+5(r+1)−3

}

=max

 A5kn+5(r+1)

max
{

A5kn+5(r+1)−1
x5kn+5(r+1)−1

, B5kn+5(r+1)−1
x15kn+5(r+1)−4

} ,
B5kn+5(r+1)

max
{

A5kn+5(r+1)−4
x5kn+5(r+1)−4

, B5kn+5(r+1)−4
x5kn+5(r+1)−7

}


=max
{

min
{

A5kn+5(r+1)x5kn+5(r+1)−1

A5kn+5(r+1)−1
,

A5kn+5(r+1)x5kn+5(r+1)−4

B5kn+5(r+1)−1

}
,

min
{

B5kn+5(r+1)x5kn+5(r+1)−4

A5kn+5(r+1)−4
,
B5kn+5(r+1)x5kn+5(r+1)−7

B5kn+5(r+1)−4

}}
.

It is easy to see that

min
{

A5kn+5(r+1)x5kn+5(r+1)−1

A5kn+5(r+1)−1
,

A5kn+5(r+1)x5kn+5(r+1)−4

B5kn+5(r+1)−1

}

≤ A5kn+5(r+1)x5kn+5(r+1)−4

B5kn+5(r+1)−1
≤ MA,l

B5kn+5r+4
x5kn+5(r+1)−4 ≤ Mx5kn+5(r+1)−4

and

min
{

B5kn+5(r+1)x5kn+5(r+1)−4

A5kn+5(r+1)−4
,
B5kn+5(r+1)x5kn+5(r+1)−7

B5kn+5(r+1)−4

}

≤ B5kn+5r+5x5kn+5(r+1)−4

A5kn+5(r+1)−4
≤ B5kn+5r+5x5kn+5(r+1)−4

mp
≤ Mx5kn+5(r+1)−4.

So

x5kn+5(r+1)+1 ≤ Mx5kn+5r+1,

which reads

x5kn+5(r+m+1)+1 ≤ Mx5kn+5(r+m)+1 ≤ ·· · ≤ Mmx5kn+5r+1 → 0(m →+∞).

Thereout,

lim
n→∞x5n+1 = lim

n→∞x5(n+1)+1 = lim
n→∞x5n+6 = 0.
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Also, for all n ≥ 0,

x5n+7 =max
{

A5n+6

x5n+6
,
B5n+6

x5n+3

}
≥ A5n+6

x5n+6
→+∞,

which implies

lim
n→∞x5n+2 = lim

n→∞x5n+7 =+∞.

From the relation

x5n+10 =max
{

A5n+9

x5n+9
,
B5n+9

x5n+6

}
≥ B5n+9

x5n+6
→+∞,

one can see that

lim
n→∞x5n = lim

n→∞x5n+10 =+∞.

Similar to the proof of Lemma 4.1, the following lemmas may be then derived.

Lemma 4.2. Let {xn}∞n=−3 be a solution of (1.1) and

B4 < mA,l ≤ MA,l ≤ B3,B9 < mA,l ≤ MA,l < B8, · · · ,B5(k−1)+4 < mA,l ≤ MA,l < B5(k−1)+3.

Then

lim
n→∞x5kn+5 = 0 and lim

n→∞x5kn+6 = lim
n→∞x5kn+4 =+∞.

Lemma 4.3. Let {xn}∞n=−3 be a solution of (1.1). Assume that

B3 < mA,l ≤ MA,l ≤ B2,B8 < mA,l ≤ MA,l < B7, · · · ,B5(k−1)+3 < mA,l ≤ MA,l < B5(k−1)+2.

Then

lim
n→∞x5kn+4 = 0 and lim

n→∞x5kn+5 = lim
n→∞x5kn+3 =+∞.

Lemma 4.4. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B2 < mA,l ≤ MA,l < B1,B7 < mA,l ≤ MA,l < B6, · · · ,B5(k−1)+2 < mA,l ≤ MA,l < B5(k−1)+1.

Then

lim
n→∞x5kn+3 = 0 and lim

n→∞x5kn+4 = lim
n→∞x5kn+2 =+∞.

Lemma 4.5. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B1 < mA,l ≤ MA,l ≤ B0,B6 < mA,l ≤ MA,l < B5, · · · ,B1+5(k−1) < mA,l ≤ MA,l < B5(k−1).

Then

lim
n→∞x5kn+2 = 0 and lim

n→∞x5kn+3 = lim
n→∞x5kn+1 =+∞.

The first main result in this section may be obtained.
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Theorem 4.1. Let {xn}∞n=−3 be a solution of (1.1). Suppose that for some i ∈ {0,1,2,3,4},

Bi+1 < mA,l ≤ MA,l < Bi, Bi+1+5 < mA,l ≤ MA,l < Bi+5, · · · ,

and

Bi+1+5(k−1) < mA,l ≤ MA,l < B5(k−1)+i.

Then

lim
n→∞x5n+i+2 = 0 and lim

n→∞x5n+i+3 = lim
n→∞x5n+i+1 =+∞.

Proof. The proof follows from Lemmas 4.1–4.5 and will be omitted.

In the next five lemmas one will assume that, for some i ∈ N(0,4), there exists a
j = 0,5,10, · · · ,5k−5 such that Bi+1+ j < mA,l ≤ MA,l < Bi+ j and for all t = 0,5,10, · · · ,5k−5,
where t 6= j, Bt+1+i ≤ mA,l ≤ MA,l ≤ Bt+i.

Lemma 4.6. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B5 < mA,l ≤ MA,l < B4,B10 ≤ mA,l ≤ MA,l ≤ B9, · · · ,B5+5(k−1) ≤ mA,l ≤ MA,l ≤ B5(k−1)+4.

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r+1 = 0 and

lim
n→∞x5k(n+1)+5r+2 = lim

n→∞x5k(n+1)+5r+5 =+∞.

Proof. Similar to as in Lemma 3.1, let

M =max
{MA,l

B4
,

B5

MA,l

}
< 1.

Then,

x5kn+6 =max
{

A5kn+5

x5kn+5
,
B5kn+5

x5kn+2

}

=max

 A5kn+5

max
{

A5kn+4
x5kn+4

, B5kn+4
x5kn+1

} ,
B5kn+5

max
{

A5kn+1
x5kn+1

, B5kn+1
x5kn−2

}


=max
{

min
{

A5kn+5x5kn+4

A5kn+4
,

A5kn+5x5kn+1

B5kn+4

}
,min

{
B5kn+5x5kn+1

A5kn+1
,
B5kn+5x5kn−2

B5kn+1

}}
.

Notice that

min
{

A5kn+5x5kn+4

A5kn+4
,

A5kn+5x5kn+1

B5kn+4

}
≤ A5kn+5x5kn+1

B5kn+4
≤ MA,l

B5kn+4
x5kn+1 ≤ Mx5kn+1

and

min
{

B5kn+5x5kn+1

A5kn+1
,
B5kn+5x5kn−2

B5kn+1

}
≤ B5kn+5x5kn+1

A5kn+1
≤ B5kn+5

MA,l
x5kn+1 ≤ Mx5kn+1.
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So,

x5kn+6 ≤ Mx5kn+1.

For q ∈ {1, · · · ,k−1}, it follows from (1.1) that

x5kn+5q+6 =max
{ A5kn+5q+5

x5kn+5q+5
,
B5kn+5q+5

x5kn+5q+2

}

=max

 A5kn+5q+5

max
{

A5kn+5q+4
x5kn+5q+4

, B5kn+5q+4
x5kn+5q+1

} ,
B5kn+5q+5

max
{

A5kn+5q+1
x5kn+5q+1

, B5kn+5q+1
x5kn+5q−2

}


=max
{

min
{ A5kn+5q+5x5kn+5q+4

A5kn+5q+4
,

A5kn+5q+5x5kn+5q+1

B5kn+5q+4

}
,

min
{B5kn+5q+5x5kn+5q+1

A5kn+5q+1
,
B5kn+5q+5x5kn+5q−2

B5kn+5q+1

}}
.

Notice that

min
{ A5kn+5q+5x5kn+5q+4

A5kn+5q+4
,

A5kn+5q+5x5kn+5q+1

B5kn+5q+4

}
≤ A5kn+5q+5x5kn+5q+1

B5kn+5q+4

≤ MA,l

B5kn+5q+4
x5kn+5q+1

≤ Mx5kn+5q+1

and

min
{B5kn+5q+5x5kn+5q+1

A5kn+5q+1
,
B5kn+5q+5x5kn+5q−2

B5kn+5q+1

}
≤ B5kn+5q+5x5kn+5q+1

A5kn+5q+1

≤ B5kn+5q+5

MA,l
x5kn+5q+1

≤ Mx5kn+5q+1,

which reads

x5kn+5q+6 ≤ Mx5kn+5q+1, for all q ∈ {1, · · · ,k−1}.

Thereout, it produces

x5k(n+1)+1 ≤ x5k(n+1)−4 ≤ x5k(n+1)−9 ≤ ·· · ≤ x5kn+6 ≤ Mx5kn+1.

It follows by induction that for all n ≥ 0,

x5k(n+1)+1 ≤ Mn+1x1.

Accordingly,

lim
n→∞x5kn+1 = lim

n→∞x5k(n+1)+1 = 0.
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In addition, noting that

x5k(n+1)+2 =max
{

A5k(n+1)+1

x5k(n+1)+1
,
B5k(n+1)+1

x5k(n+1)−2

}
≥ A5k(n+1)+1

x5k(n+1)+1
→+∞,

one has

lim
n→∞x5kn+2 = lim

n→∞x5k(n+1)+2 =+∞. (4.1)

Also, owing to

x5k(n+1)+5 =max
{

A5k(n+1)+4

x5k(n+1)+4
,
B5k(n+1)+4

x5k(n+1)+1

}
≥ B5k(n+1)+4

x5k(n+1)+1
→+∞,

lim
n→∞x5kn+5 = lim

n→∞x5k(n+1)+5 =+∞. (4.2)

Furthermore,

x5k(n+1)+6 =max
{

A5k(n+1)+5

x5k(n+1)+5
,
B5k(n+1)+5

x5k(n+1)+2

}
.

Hence, it follows from (4.1) and (4.2) that

lim
n→∞x5k(n+1)+6 =max

{
lim

n→∞
A5k(n+1)+5

x5k(n+1)+5
, lim
n→∞

B5k(n+1)+5

x5k(n+1)+2

}
= 0.

In view of the relation

x5k(n+1)+7 =max
{

A5k(n+1)+6

x5k(n+1)+6
,
B5k(n+1)+6

x5k(n+1)+3

}
≥ A5k(n+1)+6

x5k(n+1)+6
→∞,

one can see that

lim
n→∞x5kn+7 = lim

n→∞x5k(n+1)+7 =+∞.

Because of

x5k(n+1)+10 =max
{

A5k(n+1)+9

x5k(n+1)+9
,
B5k(n+1)+9

x5k(n+1)+6

}
≥ B5k(n+1)+9

x5k(n+1)+6
→∞,

lim
n→∞x5kn+10 = lim

n→∞x5k(n+1)+10 =+∞.

Also from the observation

x5k(n+1)+11 =max
{

A5k(n+1)+10

x5k(n+1)+10
,
B5k(n+1)+10

x5k(n+1)+7

}
,

one obtains

lim
n→∞x5k(n+1)+11 = 0.

Similarly continuing this process, one has the following results that for all r = 0,1, · · · ,k−1,

lim
n→∞x5k(n+1)+5r+1 = 0

and

lim
n→∞x5k(n+1)+5r+2 = lim

n→∞x5k(n+1)+5r+5 =+∞.

Journal of Informatics and Mathematical Sciences, Vol. 6, No. 1, pp. 1–21, 2014



18 Boundedness of a Max-type Fourth Order Difference Equation with Periodic Coefficients: D. Chen and C. Wang

The following lemmas may be analogously obtained.

Lemma 4.7. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B4 < mA,l ≤ MA,l ≤ B3,B9 ≤ mA,l ≤ MA,l < B8, · · · ,B4+5(k−1) ≤ mA,l ≤ MA,l < B5(k−1)+3.

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r = 0 and

lim
n→∞x5k(n+1)+5r+1 = lim

n→∞x5k(n+1)+5r+4 =+∞.

Lemma 4.8. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B3 < mA,l ≤ MA,l ≤ B2,B8 ≤ mA,l ≤ MA,l < B7, · · · ,B3+5(k−1) ≤ mA,l ≤ MA,l < B5(k−1)+2.

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r−1 = 0 and

lim
n→∞x5k(n+1)+5r = lim

n→∞x5k(n+1)+3 =+∞.

Lemma 4.9. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B2 < mA,l ≤ MA,l ≤ B1,B7 ≤ mA,l ≤ MA,l < B6, · · · ,B2+5(k−1) ≤ mA,l ≤ MA,l < B5(k−1)−2.

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r−2 = 0 and

lim
n→∞x5k(n+1)+5r−1 = lim

n→∞x5k(n+1)+5r+2 =+∞.

Lemma 4.10. Let {xn}∞n=−3 be a solution of (1.1). Suppose that

B1 < mA,l ≤ MA,l ≤ B0,B6 ≤ mA,l ≤ MA,l < B5, · · · ,B1+5(k−1) ≤ mA,l ≤ MA,l < B5(k−1).

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r−3 = 0 and

lim
n→∞x5k(n+1)+5r−2 = lim

n→∞x5k(n+1)+5r+1 =+∞.

One is now in a position to formulate the second main results in this section.

Theorem 4.2. Let {xn}∞n=−3 be a solution of (1.1). Suppose that for some i ∈ N(0,4) the following
two conditions are valid:

(i) There exists a j = 0,5,10, · · · ,5k−5 such that Bi+1+ j < mA,l ≤ MA,l < Bi+ j.

(ii) For all t = 0,5,10, · · · ,5k−5, where t 6= j, Bi+1+t ≤ mA,l ≤ MA,l ≤ Bi+t.

Then, for all r = 0,1, · · · ,k−1, lim
n→∞x5k(n+1)+5r+i−3 = 0 and

lim
n→∞x5k(n+1)+5r+i−2 = lim

n→∞x5k(n+1)+5r+i+1 =+∞.

Proof. For the case j = 0, the proof follows from Lemmas 4.6–4.10. The proofs for the other
cases where j = 5,10, · · · ,5k−5 are similar and will be omitted.

From the above conditions for unbounded solutions, one can easily draw a conclusion for
conditions for bounded solutions.

Theorem 4.3. Assume that the conditions (i) and (ii) do not hold for all i ∈ N(0,4). Then every
positive solution of (1.1) is bounded and becomes eventually periodic.
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5. Special case of l = 1
When l = 1, (1.1) reduces to the following form

xn+1 =max
{

A
xn

,
Bn

xn−3

}
, n = 0,1, · · · , (5.1)

where A is a positive constant. Without loss of generality, one may assumes A = 1. The previous
Theorem ?? reduces to the following form.

Theorem 5.1. Assume that {Bn}∞n=0 is a positive periodic sequence with prime period 5. Let
{xn}∞n=−3 be a solution of (5.1). Suppose that, for some i ∈ N(0,4), Bi+1 < 1< Bi. Then

lim
n→∞x5n+i+2 = 0 and lim

n→∞x5n+i+1 = lim
n→∞x5n++i+3 =+∞,

which means {xn}∞n=−3 is unbounded.

The other theorems mentioned previously in this paper, such as Theorems 3.1–4.3, have also
the corresponding reduction forms and omitted here.

6. Conclusion
In this paper one considers the boundedness nature for positive solutions of a nonlinear max-
type fourth order difference equation with periodic coefficients and derive a series of sufficient
conditions ensuring the existence of bounded and unbounded solutions to this equation. Our
interest in the future will be to consider more general max-type difference equation

xn+1 =max
{

An

xn−l
,

Bn

xn−m

}
, n = 0,1, · · · , (6.1)

where {An}∞n=0 and {Bn}∞n=0 are two periodic sequences of positive real numbers, l,m ∈ {1,2, · · · }
with l < m and the initial values x−m, · · · , x−1 and x0 are arbitrary positive real numbers.

By this detailed (1.1), one attempts for (6.1) to discover the rule that how the delays and the
periodicity of coefficients affect the boundedness property of solutions.

We hope, this work of this paper will shed some light to final revealing the rule.
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