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Abstract. In this article, we investigate the effect of rotation on plane harmonic waves in an isotropic
homogeneous micropolar elastic solid with rotation having uniform angular velocity. It is observed
that two sets of coupled dilation and shear waves are propagating with distinct speeds. Out of these,
only two shear waves are propagating without elasticity and without micropolarity and two dilation
waves are propagating with elasticity and without micropolarity. All these waves are dispersive in
nature and affected by the rotation of the medium. It is interesting to observed that harmonic plane
waves are not allowed to propagate in high rotating solids. Numerical example have been performed
to discuss the behaviour of the speed of the waves.
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1. Introduction
A nonlinear theory of micro elasticity was developed and modified as a linear theory of
micropolar elasticity. Classical theory of elasticity and micropolar elasticity is differ by an
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independent microrotation vector, so, motion in micropolar elastic solid is characterized by six
freedom parameters namely three translation and three rotation. The two parts of micropolar
media introduced by a force vector, symmetric force stress tensor and couple stress tensor.
Many authors studied the plane wave propagation in micropolar elastic solid. The studies on
shear waves having a huge importance for investigators of seismologists,geophysicists for their
predictions on seismic behavior at different parts of earth.

With the introduction of Cosserats’ theory [7], a new wave of workers started for solution of
various classical problems of elasticity. Theory of Cosserat and Cosserat [7] is the fore runner
for postulating the theory of micropolar continuum mechanics. Based on this theory Eringen
and Suhubi [9,18] and Eringen [10] have formulated what is now called the micropolar theory
of continuous media. In case of micropolar elasticity however along with displacement vector
the rotation vector is also needed to determine all the quantities. A complete discussion can be
found Eringen and Suhubi [9]. This theory has vide applications where the microstructure is
also important.

In the past the number of authors focused on wave propagation studies in materials
having voids, among those are Chandrasakharaiah and Srikanth [5], Chandrasakharaiah
[3, 4], Wright [19], Puri and Cowin [12], Ciarletta and Sumbatyam [6], Day et al. [8]. Some
authors investigated surface waves in different elastic materials. Surface wave propagation
along the plane surface of an elastic solid was studied by Rayleigh [13]. Rayleigh waves along
isothermal and insulated boundaries are examined by Chadwic and Windle [2]. Agarwal [1]
studied the surface waves in generalized thermoelasticity. Thermoelastic surface waves with
thermal relaxation in a transversely isotropic half space are investigated by Sharma and
Singh [14]. Mayer [11] have discussed the thermoelastic attenuation of surface acoustic waves.
The effects of rotation and voids on plane waves in thermoelastic solid are investigated by Singh
and Tomar [16], while the effect of voids on surface waves in a non-rotating thermoelastic solid
was studied by Singh and Pal [15] studied the plane waves in a rotating thermoelastic solid
with voids.

Recently, Somaiah and Kumar [17] studied the propagation of plane longitudinal waves in
micro-isotropic, elastic solids. Many researchers explained the angular rotation effect on plane
waves in different elastic materials, but in this article we study the angular rotation effect on
plane harmonic waves in micropolar elastic solid. In this we derive the shear and dilational
waves and they are influenced by angular rotation of the medium and also they are dispersive
in nature.

2. Formulation of the problem
Let us assume that a linear homogeneous micropolar elastic medium with rotating uniform
angular velocity Ω⃗=Ω0 p̂, where p̂ is the unit vector that represents the direction of the axis of
the rotation.The macro displacement equation of the motion involves two additional terms in the
rotating frame work namely, Centripetal acceleration Ω⃗× (Ω⃗× u⃗) and the Coriolis acceleration
2Ω⃗× ˙⃗u, where u⃗ is the displacement vector. The field equations in terms of displacement,
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microrotation for micropolar elastic solid and angular velocity Ω⃗ in the absence of body forces
and body couples are given by Eringen [10] as follows:

ρ

[
∂2u⃗
∂t2 + Ω⃗× (Ω⃗× u⃗)+2Ω⃗× ∂u⃗

∂t

]
= (λ+µ)∇∇· u⃗+ (µ+K)∇2u⃗+K∇× φ⃗ , (1)

ρJ
∂2φ⃗

∂t2 = γ(∇2φ⃗)+ (α+β)∇(∇· φ⃗)+K∇× u⃗−2Kφ⃗ , (2)

where λ,µ are Lame’s constants, K is the elastic constant, ρ is the density of the medium, J
is the moment of micro inertia and α,β,γ are micro polar parameters, while u⃗ is the macro
displacement vector and φ⃗ is the micro rotation vector. Equations (1) and (2) rewrite as

c2
1∇2u⃗+ c2

2∇∇· u⃗+ c2
3∇× φ⃗= ∂2u⃗

∂t2 + Ω⃗× (Ω⃗× u⃗)+2Ω⃗× ∂u⃗
∂t

, (3)

c4∇2φ⃗+ c2
5∇∇· φ⃗+ c2

6∇× u⃗− c2
7φ⃗= ∂2φ⃗

∂t2 , (4)

where

c2
1 =

µ+K
ρ

, c2
2 =

λ+µ
ρ

, c2
3 =

K
ρ

, c2
4 =

γ

ρJ
, c2

5 =
α+β
ρJ

, c2
6 =

K
ρJ

= c2
3

J
, c2

7 =
2K
ρJ

= 2c2
3

J
. (5)

3. Derivation of Plane Harmonic Wave
Under the method of plane harmonic solutions, the equations (3) and (4) have the solutions in
the following form

[⃗u, φ⃗]= [A⃗, B⃗]exp[ik(n̂· r⃗−vt)] (6)

where A⃗, B⃗ are vector constants, r⃗ is the position vector, v is the phase velocity and k is the
wave number with ω= kv; ω being the angular frequency, n̂ is the unit vector along the direction
of propagation. On using the vector calculus results for equation (6) we obtain

∇2u⃗ =−A⃗k2 exp[ik(n̂· r⃗−vt)], ∇∇· u⃗ =−k2n̂(n̂· A⃗)exp[ik(n̂· r⃗−vt)],
∇× u⃗ = (n̂× A⃗)ikexp[ik(n̂· r⃗−vt)], ∇2φ⃗=−B⃗k2 exp[ik(n̂· r⃗−vt)];
∇∇· φ⃗=−k2n̂(n̂· B⃗)exp[ik(n̂· r⃗−vt)], ∇× φ⃗= (n̂× B⃗)ikexp[ik(n̂· r⃗−vt)].

 (7)

Inserting equations (7) in (3) and (4) we obtain

(ω2 + Ω⃗2 − c2
1k2)A⃗− c2

2k2(n̂· A⃗)n̂+ c2
3ik(n̂× B⃗)− [(Ω⃗· A⃗)Ω+2iω(Ω⃗× A⃗)]= 0 (8)

and

[k2(c2
4 −v2)+ c2

7]B⃗+ c2
5k2n̂(n̂ · B⃗)− c2

6ik(n̂× A⃗)= 0 (9)

Solving equation (9) for B⃗ we obtain

B⃗ = c2
6ik(n̂× A⃗)

[c2
4 + c2

5 −v2]k2 + c2
7

(10)

substituting equation (10) in equation (8) we obtain[
ω2 +Ω2

0 − c2
1k2 + c2

3c2
6k2

[c2
4 + c2

5 −v2]k2 + c2
7

]
A⃗−

[
c2

2 +
c2

3c2
6k2

[c2
4 + c2

5 −v2]k2 + c2
7

]
k2(n̂· A⃗)n̂

− [(Ω⃗· A⃗)Ω⃗+2iω(Ω⃗× A⃗)]= 0. (11)
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Ω0 = |Ω⃗| is the magnitude of Ω⃗. From equation (11),the shear waves and purely dilational waves
are evaluated as follow.

3.1 Shear Waves
To evaluate shear waves, we have

n̂· A⃗ = 0 (12)

and equation (11) becomes[
ω2 +Ω2

0 − c2
1k2 + c2

3c2
6k2

(c2
4 + c2

5 −v2)k2 + c2
7

]
A⃗− [(Ω⃗· A⃗)Ω⃗+2iω(Ω⃗× A⃗)]= 0. (13)

Taking scalar product with A⃗ of equations (13), we obtain[
ω2 +Ω2

0 − c2
1k2 + c2

3c2
6k2

(c2
4 + c2

5 −v2)k2 + c2
7

]
A2 − [(Ω⃗· A⃗)2 +2iω(Ω⃗× A⃗)· A⃗]= 0.

where A⃗· A⃗ = |A|2 = A2.
Therefore,

a1v4 +a2v2 −a3 = 0, (14)

where
(Ω⃗× A⃗)· A⃗ = Ω⃗· (A⃗× A⃗)= 0, a1 = (c2

7 −ω2)Γ, a2 =ω2[c2
1 + (c2

4 + c2
5)Γ]− c2

1c2
7 + c2

3c2
6,

a3 = c2
1(c2

4 + c2
5)ω2, Γ= 1+ Ω2

0
ω2 sin2θ,

 (15)

and the angle between u⃗ and the directions of Ω⃗ is θ and given by

cos2θ = (Ω⃗· A⃗)2

Ω2
0A2

, Ω0 = |Ω⃗|, A2 = |A⃗|2.

By equation (14), the phase velocities of the shear couple waves due to the rotation of the body
are given by

v2
s1,2

= −a2 ± (a2
2 +4a1a3)

1
2

2a1
(16)

and these are dispersive in nature.

3.1.1 Case (i)
When θ = 0, the couple shear wave phase velocities in non-rotating medium are given by

v2
s1,2

= c2
1c2

7 + c2
3c2

6 −ω2(c2
1 + c2

4 + c2
5)

2(c2
7 −ω2)

±
√

(c2
1c2

7 − c2
3c2

6 −ω2(c2
1 + c2

4 + c2
5))2 +4c2

1ω
2(c2

7 −ω2)(c2
4 + c2

5)

2(c2
7 −ω2)

. (17)

3.1.2 Case (ii)
When Ω0 →∞ then v2

s1,2
→ 0, i.e., the shear waves are not exist in very high speed rotating

media.
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3.1.3 Case (iii): With Elasticity and Without Micropolarity
Presence of elasticity (K ̸= 0) and without micropolarity (α = β = γ = 0) leads to c4 = 0 = c5.
The speed of the shear waves vs are given by

v2
s = c2

1 +
c2

3c2
6

(c2
7 −ω2)Γ

, (18)

this means at presence of elasticity, without micropolarity, we get two waves.

3.1.4 Case (iv): Without Micropolarity and Elasticity
In this case, elastic constant K = 0, micropolar parameters α=β= γ= 0 leads to the speed of
the shear waves v2

s in classical elastic solid and is given by

v2
s =

µ

ρΓ
. (19)

3.2 Dilational waves
Purely dilational waves are allowed in the case that u⃗ and n̂ are in the same direction, i.e.,

n̂ · A⃗ = A , where A = |A⃗|. (20)

On taking the scalar product with A⃗ of equation (11) and using equation (20) we obtain

v2Γ+ c2
3c2

6

(c2
4 + c2

5 −v2)k2 + c2
7
− c2

1 − c2
2 −

c2
3c2

6k2

(c2
4 + c2

5 −v2)k2 + c2
7
= 0 , (21)

where Γ is given by equation (15).
On simplication of equation (21), we get the following quadratic equation in v2,

Pv4 +Qv2 +R = 0, (22)

where

P =Γ
(
1− c2

7

ω2

)
, Q = 1

ω2 [(c2
1 + c2

2)c2
7 − c2

3c2
6]− [Γ(c2

2 + c2
4)+ c2

1 + c2
2],

R = (c2
1 + c2

2)(c2
4 + c2

5)+ c2
3c2

6 .

 (23)

Therefore, the phase velocities of the dilational couple waves due to the rotation of the body are
given by

v2
d1,2

= −Q± (Q2 −4PR)
1
2

2P
. (24)

By equation (24), the velocity of the dilational waves are depends on frequency, so they are
dispersive in nature.

3.2.1 Case (i)
When θ = 0, the phase velocities of the couple dilational waves in non-rotating body are given by

v2
d1,2

= −Q
∗ ± (Q∗2 −4P

∗
R)

1
2

2P∗ , (25)

where

P∗ = 1− c2
7

ω2 ; Q∗ = 1
ω2

[
(c2

1 + c2
2)c2

7 − c2
3c2

6
]− (c2

1 +2c2
2 + c2

4) (26)

and R is given by equation (23).
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3.2.2 Case (ii)
When Ω0 →∞; (i.e., P →∞) then by equation (24),

v2
d1,2

→ 0,

i.e., very high speed rotating media not allowed to propagate dilational waves.

3.2.3 Case (iii): Without Micropolarity and Without Elasticity
In this case elastic constant K = 0, micropolar parameters α=β= γ= 0 leads to the velocity of
the dilational waves v2

d in classical case and is given by

v2
d = 1

ρ

[
λ+2µ
Γ

+ (λ+µ)
]

. (27)

4. Numerical Example
We investigate the effect of micropolarity and angular rotation on the speed of shear and dilation
waves by using the following relevant parameters from Somaiah and Kumar [17] for aluminum
epoxy material and this material modelled as an isotropic generalized micropolar materials:
α = 0.036 × 1010 N; β = 0.037 × 1010 N; γ = 0.0268 × 1010 N; K = 0.0149 × 1010 N/m2; λ =
7.59×1010 N/m2; µ = 1.89×1010 N/m2; ρ = 2190 kg/m3; J = 0.000196 cm2. Natural angular
frequency ω= 10 Hz. Magnitude of angular rotation speed Ω0 taken as Ω0 = 0,0.2,0.4,0.6. The
variation of angle of rotation θ in degrees taken as 0◦ ≤ θ ≤ 180◦. The variation of θ versus the
phase speeds of shear waves and dilation waves drawn with the use of MATLAB software.

5. Illustrations
The effect of angular rotation on phase speed of shear waves in micropolar and generalized
elastic solids are shown in Figure 1 and Figure 2.

From these figures we observed that shear waves are propagating with constant speed in
non-rotating materials, and the speed of shear waves are increasing with decreasing angular
rotations in the given range of θ and they have very low speed at θ = 80◦ and high speed at
θ = 110◦. The effects of rotation on comparative shear waves of micropolar and generalized
solids with classical theory for (K → 0) are shown in Figures 3 and 4.

From this figures we observed that shear waves in rotating classical elastic solids are slower
than rotating micropolar and rotating generalized (non-micropolar) elastic solids. Classical
shear waves are constant in high speed rotating solids, while micropolar shear waves are
constant in low speed rotating solids. But shear waves in all rotating generalized elastic solids
are constant. The variation of angle of rotation and speed of dilation waves in micropolar and
classical elastic solids are shown in Figures 5 and 6, respectively.

From these figures we noticed that dilational waves are proportional to the speed of angular
rotation of micropolar solids. Dilational waves also constant in non-rotating solids. Dilational
waves are inverse proportional to the angular rotation speed in classical elastic solids.
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Figure 1. Angle of rotation versus Speed of shear wave in Micropolar elastic solid

Figure 2. Angle of rotation versus Speed of shear wave in generalized solid

Figure 3. Angle of rotation versus Speed of shear wave in micropolar elastic solid
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Figure 4. Angle of rotation versus Speed of shear wave in generalized solid

Figure 5. Angle of rotation versus Speed of dilation wave in micropolar elastic solid

Figure 6. Angle of rotation versus Speed of dilation wave in classical elastic solid
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6. Concluding Remarks
We investigate the effect of angular rotation on propagation of plane harmonic waves. From
theoritical illustrations and a particular numerical example we conclude that:

(i) Among four harmonic plane waves, we observed that two sets of shear waves and two sets
dilation waves are propagating.

(ii) All harmonic plane waves are affected by angular rotation of the solid.

(iii) The plane harmonic waves are not allowed to propagate in the solids with infinite rotation
speed.

(iv) All these waves are dispersive in nature.

(v) Plane waves are constant in non-rotating materials.

(vi) Shear waves in micropolar and generalized elastic solids are inverse proportional to the
speed of angular rotation of the solids.

(vii) Shear waves in rotating classical elastic solids are slower than rotating generalized elastic
solids.

(viii) Dilation waves of classical elastic solids also inverse proportional to the speed of angular
rotation.
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