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Spectral Results for Operator Valued Functions

B. Surender Reddy and V. Dharmaiah

Abstract. In this paper, the general spectral results of operator valued functions
in particular holomorphic operator valued functions and operator polynomials are
studied. Further the completeness results of quadratic operator polynomials are
presented.

1. Introduction

In 1914 O. Faber studied the existence and asymptotic behaviour of eigenvalues
and eigen functions. Later in 1955 R. J. Duffin considered over damped systems
which leads to quadratic matrix eigenvalue problem of the form Aλ2 + Bλ + C
with A, B, C are symmetric matrices, A, B positive, C nonnegative. His work was
later extended to a more general matrix problem by E. H. Rogers [18]. In [23]
the problem of the type (A− B(λ))x = 0 in a Hilbert space H, where A is non-
negative compact operator and B(λ) is a polynomial operator in λ having non-
negative operator coefficients and satisfying B(0) = 0 is considered and studied
the spectrum on the non-negative real axis. In [10] a completeness result is
studied for D(λ) = I + λC1 + λ2C2, where C1 is a bounded self-adjoint operator
and C2 is a positive definite self-adjoint operator. Completeness results for the
generalized eigenvectors of a polynomial operator are obtained in [9]. In [16] the
completeness of root vectors of quadratic polynomial are obtained by an entirely
different approach. In [14] the completeness of self-adjoint quadratic pencils are
obtained by different method. In [12] the boundary value problem of a vibrating
membrane is considered and associated with quadratic polynomial operator of
the form D(λ) = λ2 I − λA1 − A2 with A1, A2 compact self-adjoint operators
and obtained the completeness result for eigenvectors of D(λ). The main aim of
this paper is to consider some more boundary value problems of mathematical
physics as in [12] and to study the spectral properties of them by associating
with operator valued functions. Further the spectral results for operator valued
functions are presented. The approach in this paper is to treat eigenvalue problems
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as eigenvalue problems for an operator polynomial A(λ) = λlA0+λl−1A1+ · · ·+Al ,
where Ai ’s (i = 0, 1, . . . , l) are linear operators in an appropriate function space.
The coefficient operators Ai ’s of the operator polynomial are determined by the
differential expression (operator) τ and the boundary conditions. Information
about the eigenvalues and the eigen functions is obtained by analyzing the
operator polynomial using the method of Functional Analysis.

2. Preliminaries

Let X be a complex Banach space and let L(X ) be the space of bounded
linear operators on X . An operator polynomial is an operator valued function
P defined on an open connected subset G of the complex plane C by P(λ) =
Alλ

l + Al−1λ
l−1 + · · ·+ A1λ+ A0, where A0, A1, . . . , Al−1, Al , are members of L(X )

and λ ∈ G. The set of all λ ∈ G for which P(λ) is one-one and surjective is called
the resolvent set of P and is denoted by Res[P] or ρ[P]. The set of all λ ∈ G for
which P(λ) is not one-one and surjective is called the spectrum of P and is denoted
by sp[P] or σ[P]. The set of all λ in sp[P] for which P(λ) is not one-one is called
the point spectrum of P and is denoted by psp[P]. An element in the psp[P] is
called an eigenvalue of P.

2.1. Fundamental Results for Holomorphic Operator Valued Functions

Let X denote a complex Banach Space and let L(X ) denote the Banach space of
bounded linear operators with domain and range in X . A function U : G ⊆ C →
L(X ) is called an operator valued function, where G is connected subset of C. An
operator valued function U is said to be holomorphic if it has derivatives of all
orders at every point in a neighborhood of it.

Theorem 2.1. If U(λ) with values in L(X ) is locally holomorphic operator valued
function in an open connected subset of C, then Res[U] is an open connected set in C
and U−1(λ) is locally holomorphic on Res[U] and

d

dλ
U−1(λ) =−U−1(λ)

�
d

dλ
U(λ)

�
U−1(λ)(2.1.1)

Proof. The proof of this theorem can be found in [13]. ¤

The next theorem gives a sufficient condition for a pole of U−1(λ) to be an
eigenvalue of U .

Theorem 2.2. If U−1(λ) has a pole at γ and U(λ) with values in L(X ) is locally
holomorphic in an open neighborhood of γ then γ is an eigenvalue of U.

Proof. Let Un =
U (n)

n!
(n = 0, 1, 2, . . . ) be the coefficients in the Taylor series

expansion of the holomorphic operator U about γ then

U(λ) =
∞∑

n=0

Un(λ− γ)n(2.1.2)
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Let γ be a pole of order m of U−1. Let Vn, (n = −m,−m+ 1, . . . ), V−m 6= 0 be the
coefficients in the Laurent expansion of U−1 about γ. In a deleted neighborhood
of γ, we have

U−1(λ) =
∞∑

n=−m

(λ− γ)nVn(2.1.3)

and

I = U(λ)U−1(λ)(2.1.4)

substituting (2.1.2) and (2.1.3) in (2.1.4) we obtain

I =
� ∞∑

n=0

(λ− γ)nUn

�� ∞∑

n=−m

(λ− γ)nVn

�
(2.1.5)

I =
∞∑

n=0

� n∑

i=0

UnVn−m−i

�
(λ− γ)n(2.1.6)

from (2.1.6) we obtain, the coefficient of (λ− γ)n in the above expansion as

n∑

i=0

UiVn−m−i = δnm I , (n= 0, 1, . . . , m)(2.1.7)

where δnm is the kronecker delta.
On using above equation (2.1.7) with n= 0 we have

U0V−m = 0 or U(γ)V−m = 0.(2.1.8)

This implies that the range of V−m is contained in the null space of U(γ) and V−m

is different from zero implies the range of V−m contains non-zero elements. This
implies γ is an eigenvalue of U . Hence the theorem. ¤

Let H will denote a complex Hilbert space with inner product (•,•). If T is a
linear operator acting in H with domain dense in H, then we denote by T ∗ the
adjoint of T . The following results give a sufficient condition for a pole γ of U−1 to
be a simple pole. Here U takes its values in L(H) and is locally holomorphic in a
neighborhood of γ. Let γ be a pole of U−1 of order m> 1. For n= 0, the equation
(2.1.7) gives

U(γ)V−m = 0(2.1.9)

Again on using (2.1.7) for n= 1, we get
∑1

i=0 UiV1−m−i = 0, i.e.,

U0V1−m + U1V−m = 0,

since Un =
U (n)

n!
, so for n= 1, U1 = U (1), therefore

U(γ)V−m+1 + U (1)(γ)V−m = 0(2.1.10)
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choose a non-zero vector x in the range of V−m and write x = V−mw. Then form
(2.1.9), x is in the null space of U(γ). From (2.1.10) and for the vector w,

U(γ)V−m+1w + U (1)(γ)V−mw = 0.

Then on taking inner product with x 6= 0.

(U(γ)V−m+1w, x) + (U (1)(γ)V−mw, x) = 0(2.1.11)

and hence on using the definition of adjoint operator to U(γ) and x = V−mw, we
have

(V−m+1w, U(γ)∗x) + (U (1)(γ)x , x) = 0(2.1.12)

If U(γ)∗x is orthogonal to V−m+1w for all w with the property that x = V−mw,
then (U (1)(γ)x , x) = 0 with x different form zero. From this fact we can define the
following theorem.

Theorem 2.3. Let H be a Hilbert space. Let γ be a pole of U−1, where U with values
in L(H) is locally holomorphic in a neighborhood of γ. If U(γ) is a self-adjoint and
(U (1)(γ)x , x) 6= 0 for all non-zero x in the null space of U(γ) then γ is a simple pole
of U−1.

Proof. Suppose γ is not a simple pole of U−1. Let us suppose that γ be a pole of
U−1 of order m > 1. From the observation in the above discussion for a pole of
order m> 1, we have from (2.1.11) and (2.1.12)

(U(γ)V−m+1w, x) + (U−1(γ)x , x) = 0

where x 6= 0 is in the range of V−m with x = V−mw. i.e.,

(V−m+1w, U(γ)∗x) + (U (1)(γ)x , x) = 0,

but U(γ)∗x = 0 for all x in the null space of U(γ), so, the above equation
becomes (U (1)(γ)x , x) = 0 which is a contradiction to the given hypothesis of the
theorem. So, our assumption is wrong. Thus γ is a simple pole of U−1. Hence the
theorem. ¤

2.2. Fundamental Results for Operator Polynomial

Let X denote a complex Banach Space and let L(X ) denote the space of bounded
linear operators with domain and range in X .

Let H denote a complex Hilbert space with inner product (•,•) then

(i) An operator T is said to positive (negative) if (T x , x)≥ 0 ((T x , x)≤ 0)
(ii) An operator T is said to positive (negative) definite if for each x 6= 0 in the

domain of T such that (T x , x)> 0 ((T x , x)< 0)

Some fundamental results on resolvent and spectra of operator polynomial
satisfying at least the following conditions are obtained.

(2.2.1) The coefficients are in the set of closed operators having domain and range
in X .
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(2.2.2) One of the coefficients has the domain D which is contained in the domains
of the remaining coefficients.

(2.2.3) The values of the operator polynomial are closed operators with domain
D and range in X .

Here we note that if the values of the operator polynomial are not in L(X ),
then we can not use the results directly of section 2.1. However certain operator
polynomials, not having values in L(X ) do have properties similar to those results
will be presented in this section. Let A(λ) = λlA0+λl−1A1+ · · ·+Al be an operator
polynomial. For (n= 0, 1, . . . , l), define ∆nA(λ) to be the operator polynomial as

∆nA(λ) = (Dnλl)A0 + (D
nλl−1)A1 + · · ·+ (Dnλn)Al−n(2.2.4)

where Dn = dn

dλn . Let ∆nA(λ) be the zero operator if n> l.

Lemma 2.4. Let X be a complex Banach space and let A(λ) = λlA0+λl−1A1+· · ·+Al

be an operator polynomial with coefficients acting in X satisfying (2.2.1), (2.2.2) and
(2.2.3) then

(i) If the leading coefficient A0 satisfies (2.2.2) and is one-one and surjective then
sp[A] is bounded.

(ii) If the constant term Al satisfies the assumption in (i) then Res[A] containes a
neighborhood of zero.

Theorem 2.5. Let X be a complex Banach space and let A(λ) = λlA0+λl−1A1+ · · ·+
Al be an operator polynomial with coefficients acting in X satisfying (2.2.1), (2.2.2)
and (2.2.3). Suppose there exists an operator E in L(X ) which is one-one and onto
the domain of A(λ). Let F(λ) = A(λ)E, then

(i) the values of F(λ) are in L(X ) and F(λ) is holomorphic on C.
(ii) Res[A] = Res[F], sp[A] = sp[F] and psp[A] = psp[F].

(iii) Res[A is open in C, A−1 is locally holomorphic on Res[A] and dA−1

dλ
=

−A−1(λ)∆A(λ)A−1(λ)
(iv) poles of A−1 are the eigenvalues of A
(v) γ is a pole of A−1⇔ γ is a pole of F−1.

Theorem 2.6. Let H be a Hilbert space and let A(λ) be an operator polynomial with
coefficients acting in H satisfying (2.2.1), (2.2.2) and (2.2.3). Suppose there exists
an operator E in L(H) which is one-one and onto the domain of A(λ). Let γ be a pole
of A−1 in H. If A(γ) ≤ A(γ)∗ and (∆A(γ)x , x) 6= 0 for all non-zero x in the nullspace
of A(γ) then γ is a simple pole of A−1.

Corollary 2.7. Let H be a complex Hilbert space and let A(λ) = λlA0 + λl−1A1 +
· · · + Al be an operator polynomial with coefficients acting in H satisfying (2.2.1),
(2.2.2) and (2.2.3). Let the domain D defined by (2.2.2) be dense in H. Assume that
the coefficients of A(λ) satisfy Ai ≤ A∗i , (i = 0, 1, . . . , l) and let γ 6= 0 be real and a
pole of A−1. Suppose there exists an operator E in L(H) which is one-one and onto
the domain of A(λ). Then any one of the following conditions is sufficient to assume
that γ is a simple pole of A−1.
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(i) γ > 0 and ±An, (n = 0, 1, . . . , l − 1), positive definite with respect to the
nullspace of A(λ).

(ii) γ < 0 and l even (odd), ±An positive definite with respect to the nullspace of
A(λ) for n even (odd) and ∓An positive definite with respect to the nullspace of
A(λ) for n odd (even) (n= 0, 1, . . . , l − 1).

(iii) γ > 0, ±Al and ∓An, (n = 0, 1, . . . , l − 1) positive definite with respect to the
nullspace of A(λ)

(iv) γ < 0 and l even (odd), ±Al and ∓An for even (odd) and ∓An for n odd (even)
positive definite with respect to the nullspace of A(λ), (n= 0, 1, . . . , l − 2).

Lemma 2.8. Let H be a complex Hilbert space and let A(λ) = λ2A0 + λA1 + A2 be
an operator polynomial with coefficients acting in H satisfying (2.2.1), (2.2.2) and
(2.2.3). Let the domain D defined by (2.2.2) be dense in H. Let γ be an eigenvalue of
A, assume Ai ≤ A∗i , (i = 0, 1, 2), and hence assume ±A0 and ∓An are positive definite
with respect to the nullspace of A(λ). Then

(i) γ is real
(ii) If γ is non-zero and a pole of A−1 and there exists an operator E in L(H) which

is one-one and onto D, then γ is a simple pole of A−1.

3. Main Results

3.1. General Spectral Results

Let X be a complex Banach space and let X ′ denote the conjugate space of X ,
let L(X ) be the space of bounded linear operators on X . For an operator T ∈ L(X )
define the conjugate of T , which we denote by T ′, as the operator with domain
and range in X ∗ with the property that T ′ f ′ = f ′T , for T ∈ X ′. We will use the
notions of Fredholm operator. If T is a linear operator acting in X , let n(T ) denote
the dimension of the null space of T and let d(T ) denote the dimension of the
quotient space of X modulo range of T . If n(T ) and d(T ) are not both infinite then
we say that T has index. The index of T which we denote by ind(T ), is defined by
ind(T ) = n(T )− d(T ). An operator T in L(X ) which has closed range and which
has finite index is called Fredholm operator.

In this section, we examine operator valued functions W (λ) with the property
that the spectrum consists of isolated eigenvalues which are poles of the resolvent
operator W−1. Let H(λ) and J(λ) be operator valued functions defined on an
open set G of the complex plane C. Let H(λ) take its values in L(X ) and J(λ)
take its values in K(X ) (K(X ) is the set of compact operators with domain X and
range in X ). Let H(λ) and J(λ) be locally holomorphic on G and we assume that
Res[H] = G. Let

W (λ) = H(λ) + J(λ)(3.1.1)

W (λ) defined on G, takes its values in L(X ) and is locally holomorphic on G. We
have the following theorem which describes about the spectrum of operator W .
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Theorem 3.1. Let W (λ) = H(λ) + J(λ) be defined as above. The spectrum of W
consists of eigenvalues, and either all λ in G are eigenvalues or there are only a finite
number of eigenvalues in each compact subset of G.

Proof. Express W (λ) as

W (λ) = H(λ)(I +H−1(λ)J(λ))(3.1.2)

H−1 with values in L(X ) is locally holomorphic on G by (2.2.1), and hence
H−1(λ)J(λ) with values in K(X ) is locally holomorphic on G. Let γ be in sp[W].
Suppose 1 is not an eigenvalue of λI + H−1(γ)J(γ), where γ is fixed and λ is the
parameter. By the classical spectral theory for compact operators it follows that 1
is in the resolvent set of λI +H−1(γ)J(γ). Then since

W−1(γ) = (I +H−1(γ)J(γ))−1H−1(γ)(3.1.3)

γ is in the Res[W], which is a contradiction. Thus γ ∈ sp[W]⇒ 1 is an eigenvalue
of λI + H−1(γ)J(γ) and on using (3.1.2) γ is an eigenvalue of operator W . Thus
sp[W] consists entirely of eigenvalues of W . Further more, the set of eigenvalues
of W is equal to the set of γ with the property that 1 is an eigenvalue of
λI +H−1(γ)J(γ). By Theorem 1.9 of Chapter 7 of [11] either 1 is an eigenvalue of
λI +H−1(γ)J(γ) for all γ in G or 1 is an eigenvalue of λI +H−1(γ)J(γ) for only a
finite number of γ in each compact subset of G. Hence the theorem. ¤

Lemma 3.2. Let W (λ) = H(λ)+ J(λ) be defined as above. Let γ be an eigenvalue of
W then

(i) the null spaces of W (γ) and I +H−1(γ)J(γ) coincide.
(ii) the null spaces of W (γ)′ and (I +H−1(γ)J(γ))′ have the same dimension.

(iii) W (γ) has closed range if and only if I +H−1(γ)J(γ) has closed range.

Proof. (i) From (3.1.2), we have W (γ) = H(γ)(I +H−1(γ)J(γ)),
Since H−1 with values in L(X ) is locally holomorphic on G, so H(γ) is one-one.
Hence the result.
(ii) W (γ) = H(γ)(I+H−1(γ)J(γ)) on using the properties of the conjugate operator
we get

W (γ)′ = (I +H−1(γ)J(γ))′H(γ)′(3.1.4)

since H(γ) is onto, so H(γ)′ is one-one, hence the result follows (ii) from (3.1.4)
as in result (i).
(iii) since H(γ) and H−1(γ) are in L(X ), so result (iii) follows by using (3.1.2). ¤

Theorem 3.3. Let W (λ) = H(λ) + J(λ) be defined as above. Let γ be an eigenvalue
of W then

(i) the null spaces of W (γ) and W (γ)′ are finite dimensional and have the same
dimension.

(ii) the range of W (γ) is closed.
(iii) W (γ) is a Fredholm operator with index zero.
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Proof. Assume λ = 1 is an eigenvalue. On applying the Riesz-Schauder theory
to an operator λI + H−1(γ)J(γ) with λ = 1, the null space of I + H−1(γ)J(γ)
is finite dimensional [21, 3]. By (i) of Lemma 3.2, the nullspaces of W (γ) and
I + H−1(γ)J(γ) coincide. Similarly the nullspace of (I + H−1(γ)J(γ))′ is finite
dimensional and (ii) of Lemma 3.2 implies

n(W (γ)′) = n((I +H−1(γ)J(γ))′(3.1.5)

The nullspace of I +H−1(γ)J(γ) and (I +H−1(γ)J(γ))′ have the same dimension.
Hence the result (i) and an operator I + H−1(γ)J(γ) maps bounded closed sets
onto closed sets. Hence I + H−1(γ)J(γ) has closed range from Theorem 1.10 of
Chapter IV of [11]. Hence the result (ii) follows from (iii) of Lemma 3.2.

To prove (iii), use results (i) and (ii) i.e.,

d(W (γ)) = n(W (γ)′) = n(W (γ))(3.1.6)

on using Theorem 2.3 of Chapter IV of [11] and (3.1.6), we have

ind(W (γ)) = n(W (γ))− d(W (γ)) = 0(3.1.7)

Hence the result (iii). ¤

The notions of generalized ascent and descent have been formulated in
Chapter III of [2] in such a way as to be useful in characterizing poles of locally
holomorphic operator valued functions. The definitions of ascent and descent for
locally holomorphic operator valued functions are given as follows.

Let X be a complex Banach space and let U(λ) defined on as open neighborhood
of γ with values in L(X ) be locally holomorphic. Let Un be the nth coefficient of
Taylor’s expansion of U at γ. i.e.,

Un =
U (n)

n!
(n= 0, 1, 2, . . . )(3.1.8)

For (m = 0, 1, 2, . . . ), let Hm be the set of all x in X with the property that there
exist x0, x1, . . . , xm in X such that x0 = x and

n∑

i=0

Ui xn−i = 0, (n= 0, 1, 2, . . . , m)(3.1.9)

Further, let H ′m be the set of all y in X with the property that there exists
x0, x1, . . . , xm in X such that

n∑

i=0

Ui xn−i = δnm y, (n= 0, 1, 2 . . . , m)(3.1.10)

The extended integer α(U), defined by

α(U) =min{m : Hm = {0}}(3.1.11)
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will be called the ascent of U at γ. The extended integer δ(U), defined by

δ(U) =min{m : H ′m = X }(3.1.12)

will be called the descent of U at γ.
For the locally holomorphic operator valued function W (λ) = H(λ) + J(λ)

defined as above, we show that the eigenvalues of W are poles of W−1. We know
that the poles of W−1 are eigenvalues of W in Theorem 2.2.

Theorem 3.4. Let W (λ) = H(λ)+ J(λ) be defined as above. Assume Res[W] is not
empty. Then γ is an eigenvalue of W if and only if γ is a pole of W−1.

Proof. Let γ be an eigenvalue of W . By Theorem 3.3, W (γ) is a Fredholm
operator with index zero. Hence by Theorem 1.3 of Chapter III of [2]. We have
α(W ) = δ(W ). If α(W ) = +∞ then γ is an interior point of sp[W] by proposition
5.5 of Chapter III of [2]. This is impossible by Theorem 3.1 Since we are assuming
Res[W] is not empty. Thus α(W )< +∞ and α(W ) = δ(W ) = m for some positive
integer m. It follows from Theorem 5.2 of Chapter III of [2] that γ is a pole of W−1

of order m. ¤

3.2. Spectral Results for Operator Polynomial

Let X be a complex Banach space and let K(X ) denote the closed subspace of
L(X ) consisting of compact operators. In this section, we restrict the discussion to
operator polynomial which satisfy the following conditions

(3.2.1) One of the coefficients is a one-one closed operator with domain D in X
and range X .

(3.2.2) The coefficients with the exception of the one described in (3.2.1) are in
L(X )

Note that these conditions imply that the values of operator polynomial are in
the set of closed operators having domain D and range in X . Hence any operator
polynomial satisfying (3.2.1) and (3.2.2) also satisfies (2.2.1), (2.2.2) and (2.2.3).

Now we state some spectral results for operator polynomials satisfying the
above conditions (3.2.1) and (3.2.2).

Theorem 3.5. Let X be complex Banach space and let A(λ) be an operator polynomial
on X satisfying (3.2.1) and (3.2.2). Assume Res[A] is not empty and assume there
exists an operator E in K(X ) which is one-one and onto the domain of A(λ), then

(i) the non-zero elements of sp[A] are eigenvalues of A and the eigenvectors only
accumulate at zero or at∞.

(ii) the non-zero eigenvalues of A are poles of A−1 and poles of A−1 are eigenvalues
of A.

Proof. Let A(λ) = λlA0+λl−1A1+ · · ·+Al and let Ai be the coefficients of operator
polynomial A(λ) satisfying (3.2.1) and (3.2.2). Let A(λ)E = H(λ) + J(λ), Where
H(λ) = λiAi E and where J(λ) = λlA0E + · · · + λl−i+1Ai+1E + · · · + Al E. Let us
assume that the operators H and J are defined on C−{0}. The assumptions on Ai
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and E imply Ai E and (Ai E)−1 = E−1A−1
i are both in L(X ). Thus the values of H are

in L(X ) and Res[H] = C− {0}. The coefficients of J are in K(X ) as the product
of a bounded operator and a compact operator is compact. Hence the operators H
and J are holomorphic on C−{0}. Hence we can apply Theorem 3.1 to A(λ)E and
then on using Theorem 2.5, we obtain the result (i). The proof of (ii) is obtained
by applying the Lemma 3.2 to A(λ)E and then on using Theorem 2.5. Hence the
required result. ¤

Remark 3.6. Let A(λ) be an operator polynomial with coefficients acting in X
satisfying (3.2.1) and (3.2.2). If Res[A] is not empty and the coefficients Ai

satisfying (3.2.1) have compact inverse, then the assumptions of Theorem 3.5 are
satisfied with E = A−1

i .

Remark 3.7. Let A(λ) be an operator polynomial with coefficients acting in X
satisfying (3.2.1) and (3.2.2). If the leading coefficient or the constant coefficient
of polynomial operator A satisfies (3.2.1), then Res[A] is not empty by Lemma 2.4.

3.3. A Completeness Results for a Quadratic Operator Polynomial

In this section, let H be a complex Hilbert space with inner product (•,•). Let
K1 and K2 be compact self-adjoint operators in H and assume K2 positive definite.
Let C(λ) be the operator polynomial defined by

C(λ) = λ2 I −λK1 − K2(3.3.1)

then C(λ) satisfies the conditions (2.2.1), (2.2.2) and (2.2.3). Since the leading
coefficient of C(λ) is bijective, so the spectrum of operator polynomial C is
bounded by Lemma 2.4. Since K2 is assumed to be positive definite by Lemma 2.8,
so the eigenvalues of C are real and zero is not an eigenvalue of C . We know
from Theorem 3.5 that the spectrum of C consists of atmost a countable set of
eigenvalues with zero as the only possible limit point.

In this section, we obtain a completeness result for C(λ). To do this we linearize
the equation

C(λ)x = λ2 x −λK1 x − K2 x = 0, where x ∈ H(3.3.2)

as follows. Equation (3.3.2) for λ non-zero is equivalent to the pair of equations

λx − K1 x − K
1
2

2 y = 0, where x , y ∈ H(3.3.3)

y =
1

λ
K

1
2

2 x(3.3.4)

where K
1
2

2 denotes the positive square root of K2.
The pair of equations (3.3.3) and (3.3.4) can be treated as a single equation in

the product space H×H, i.e.,

LY = λY,(3.3.5)
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where

L =




K1 K
1
2

2

K
1
2

2 0


 , Y =

�
x
y

�
∈ H×H(3.3.6)

The operator K
1
2

2 is positive and self-adjoint. Since K
1
2

2 is self-adjoint and (K
1
2

2 )
2 =

K2, which is compact. So, K
1
2

2 is compact. Thus the operator L defined by (3.3.6)
is a compact self-adjoint operator in H×H.

The eigenvalue problems (3.3.2) and (3.3.5) are equivalent in the following
sense. If non-zero λ is an eigenvalue of (3.3.2) with corresponding eigenvector x

in H, then λ is an eigenvalue of (3.3.5) with corresponding eigenvector




x

1
λ

K
1
2

2 x




in H×H. Also, if λ 6= 0 is an eigenvalue of (3.3.5) with corresponding eigenvector�
x
y

�
in H×H, then λ is an eigenvalue of (3.3.2) with corresponding eigenvector

x in H.
The following results are obtained by applying the classical theory for compact

symmetric operators in a Hilbert space to the newly defined operator L, for the
classical theorey of Chapter IV of [17].

Let I denote the identity operator in H×H. The operator L − λI defined by
(3.3.5) has both positive and negative eigenvalues as

〈LY, Y 〉= (K1 x , x) + 2Re(K
1
2

2 x , y)(3.3.7)

assume both positive and negative values. Here 〈•,•〉 denote the inner product in
a H×H and (•,•) denotes the inner product in H and we define

��
x1
x2

�
,
�

y1
y2

��
= (x1, y1) + (x2, y2)(3.3.8)

Re(•,•) denotes the real part of (•,•).
If λ is an eigenvalue of L−λI then the nullspace of L−λI is finite dimensional

and closed, multiplicity of λ is the dimension of the nullspace of L − λI . Let
{λi} be the sequence of eigenvalues of L − λI , where the sequence includes
eigenvalues repeated according to their multiplicity. There exists a corresponding

set of orthonormal eigenvectors
��

x i
yi

��
with the property that for any Y =

�
x
y

�

in H×H.

〈LY, Y 〉=
∑

i

λi |(x , x i) + (y, yi)|2(3.3.9)

where the sum is taken over all the eigenvalues, (multiplicities included). The set��
x i
yi

��
is complete in H×H, since zero is not eigenvalue of L−λI .

Write {λi} = {λ+i } + {λ−i }, where {λ+i } is the set of positive eigenvalues
(repeated according to multiplicity) enumerated in non-increasing order and {λ−i }
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is the set of negative eigenvalues (repeated according to multiplicity) enumerated
in non-decreasing order.

Let the subset of
��

x i
yi

��
corresponding to eigenvalues {λ+i } be denoted by

��
x+i
y+i

��
and let the subset

��
x i
yi

��
of corresponding to eigenvalues {λ−i } be

denoted by
��

x−i
y−i

��
. The equation (3.3.9) can be expressed as

〈LY, Y 〉=
∑

i

λ+i |(x , x+i ) + (y, y+i )|2 +
∑

i

λ−i |(x , x−i ) + (y, y−i )|2(3.3.10)

Lemma 3.8. Let K2, {x+n } and {x−n } be described as above, then {K
1
2

2 x+n } is complete

in Hilbert space H in the sense that the span of {K
1
2

2 x+n } is dense in H. The similar

conclusion holds for {K
1
2

2 x−n } as well.

Proof. We show that

(y, K
1
2

2 x+n ) = 0(3.3.11)

for all n implies y = 0. To prove this let y+n be described as above, i.e., y+n =
1
λ+n

K
1
2

2 x+n .

By (3.3.11), we have

(y, y+n ) = 0 for all n(3.3.12)

(i) If (y, y−n ) = 0 for all n, then the vector
�

0
y

�
is orthogonal to the complete set

��
x+i
y+i

��⋃��x−i
y−i

��
and hence y = 0.

(ii) (y, y−n ) 6= 0 for some n, then from the equations (3.3.10) and (3.3.12), we get
�

L
�

0
y

�
,
�

0
y

��
=
∑

i

λ−i |(y, y−i )|2 < 0.(3.3.13)

But from (3.3.7), we have
�

L
�

0
y

�
,
�

0
y

��
= 0(3.3.14)

contradicting the relation (3.3.13). Thus result (i) holds. Hence the relation
(3.3.11) implies y = 0.

Let M be the closed linear span of {K
1
2

2 x+n } and we have in the Hilbert space
H = M

⊕
M⊥, where M⊥ denotes orthogonal complement of M . Since M⊥ = {0},

so the span of {K
1
2

2 x+n } is dense in Hilbert space H. Similarly we can show that the

span of {K
1
2

2 x−n } is dense in H. ¤
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This lemma shows that both the sequences {λ+i } and {λ−i } are infinite if H is
infinite dimensional space.

Lemma 3.9. Let K1, K2, {x+n } and {x−n } be described as above. If in addition K1 is
positive (negative), then {x+n } ({x−n }) span a dense subset of H.

Proof. Suppose K1 is positive. We show (x , x+n ) = 0 for all n implies x = 0. Assume

(x , x+n ) = 0 for all n(3.3.15)

(i) If (x , x−n ) = 0 for all n then the vector
�

x
0

�
is orthogonal to the complete set

��
x+i
y+i

��⋃��x−i
y−i

��
and hence x = 0

(ii) (x , x−n ) 6= 0 for some n, then form (3.3.10), we have
�

L
�

x
0

�
,
�

x
0

��
(3.3.16)

=
∑

i

λ+i |(x , x+i ) + (0, y+i )|2 +
∑

i

λ−i |(x , x−i ) + (0, y−i )|2

=
∑

i

λ+i |(x , x+i )|2 +
∑

i

λ−i |(x , x−i )|2.

Since (x , x+n ) = 0 for all n, so, we have
�

L
�

x
0

�
,
�

x
0

��
=
∑

i

λ−i |(x , x−i )|2 < 0.(3.3.17)

From (3.3.7) and the assumption that K1 is positive, we have
�

L
�

x
0

�
,
�

x
0

��
≥ 0(3.3.18)

which is a contradiction to (3.3.17). Thus x = 0. Hence {x+n } span a dense subset
of H. Similarly if K1 is negative, we can show that {x−n } span a dense subset of H.
Hence the theorem. ¤

Remark 3.10. The boundary value problems that we are going to consider
subsequently give rise to an operator polynomial of the form A(λ) = L − λM1 −
λ2M2 with coefficients acting in an infinite dimensional Hilbert space H satisfying
the following conditions.

(3.3.19) L has dense domain
(3.3.20) L is one-one, self-adjoint, surjective operator having compact inverse.
(3.3.21) M1 and M2 are bounded self-adjoint operators defined on all of H.

In some cases we also have

(3.3.22) M1 is positive or negative and L, M2 are positive definite.

In such cases we have the following theorem
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Theorem 3.11. Let A(λ) = L − λM1 − λ2M2 be an operator polynomial with
coefficients acting in an infinite dimensional Hilbert space H, satisfying conditions
(3.3.19) to (3.3.22) then

(i) the eigenvalues of A are real
(ii) the positive (negative) eigenvalues enumerated in non-decreasing (non-

increasing) order form an infinite sequence converging to +∞ (−∞).
Proof. The result (i) is true obviously by Lemma 2.8. To prove the result (ii) we
require the following discussion

An operator L is positive, self-adjoint, so, L−1 is positive self-adjoint. Let L
1
2

and L
−1
2 denote the positive self-adjoint square roots of L and L−1 respectively. For

information about square roots see Lemma 7.3 of Chapter XII of [8]. The domain
of L

1
2 contains the domain of L and L

−1
2 is defined on all of H, since L is surjective,

so, L
−1
2 is compact. Since L

−1
2 is self-adjoint, so (L

−1
2 )2 = L−1, is compact. If Mi

(i = 1, 2) is a positive self-adjoint multiplicative operator, then

L
−1
2 Mi L

−1
2 = (L

−1
2 M

1
2

i )(M
1
2

i L
−1
2 ) = (M

1
2

i L
−1
2 )∗(M

1
2

i L
−1
2 )

is positive self-adjoint. Since Mi L
−1
2 is bounded and L

−1
2 is compact, it follows that

L
−1
2 Mi is compact.
With the help of above defined operator, consider the operator polynomial

K(µ) = L
−1
2 M2 L

−1
2 −µL

−1
2 M1 L

−1
2 −µ2 I(3.3.23)

The operator polynomial A and newly defined operator polynomial K are
equivalent in the following sense.

If µ is an eigenvalue of K with corresponding eigenvector y , then 1
µ

is an

eigenvalue of A and L
−1
2 y is a corresponding eigenvector. On the other hand if λ

is an eigenvalue of A with corresponding eigenvector x , then 1
λ

is an eigenvalue of

K and L
1
2 x is a corresponding eigenvector. Now on using result (i) of Theorem 3.5

and the preceding discussion, the result (ii) is obtained. Hence the theorem. ¤

Theorem 3.12. A(λ) = L−λM1−λ2M2 be an operator polynomial with coefficients
acting in an infinite dimensional Hilbert space H satisfying (3.3.19) to (3.3.22) then

(i) if M1 is positive (negative), the set of eigenvectors corresponding to the positive
(negative), eigenvalues span a dense subset of H.

(ii) if M2 is multiplication by a positive constant then each of the sets of eigenvectors
corresponding to the positive and negative eigenvalues span a dense subset of H.

Proof. Let {x+n } ({x−n }) denote the subset of eigenvectors corresponding to the
positive (negative) eigenvalues of A.

Suppose M1 is positive. From Lemma 3.9 and the equivalence relation between
operator polynomials A and K described in above theorem, we have

(x , L
1
2 x+n ) = 0 for all n implies x = 0.(3.3.24)
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We show that (z, x+n ) = 0 for all n implies z = 0. Since L
1
2 is surjective, let

z = L
1
2 x then (z, x+n ) = 0 for all n implies (L

1
2 x , x+n ) = 0 for all n. Since L

1
2 is

self-adjoint, so we have (x , L
1
2 x+n ) = 0. Hence by (3.3.24) we have x = 0 and

hence z = L
1
2 x = 0. Similar result holds for M1 negative. Thus part (i) is proved.

From Lemma 3.8 and the equivalence relation between operator polynomials
A and K described in above it follows that each of the sets {(L −1

2 M2 L
−1
2 )

1
2 L

1
2 x+n }

and {(L −1
2 M2 L

−1
2 )

1
2 L

1
2 x−n } are complete in H. If M2 is multiplication by a positive

constant then it follows immediately that {x+n } and {x−n } are complete in H. Hence
they span a dense subset of H. Thus result (ii) is obtained. Hence the theorem. ¤

Completeness results for a quadratic operator polynomial of the form D(λ) =
I+λB+λ2C , where C is a positive definite self-adjoint operator and B is a bounded
self-adjoint operator are given in [10]. In [10], assuming a strong damping
condition, completeness for eigenvectors, associated with eigenvalues of D are
given. Completeness results of different nature for the generalized eigenvectors of
an operator polynomial are obtained in [9].
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