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On the Area of the Symmetry Orbits of
the Einstein-Vlasov-Scalar Field System
with Plane and Hyperbolic Symmetry

D. Tegankong

Abstract We prove in the case of cosmological models for the Einstein-Vlasov-
scalar field system, that the area radius of compact hypersurfaces tends to a
constant value as the past boundary of the maximal Cauchy development is
approached. In other case, there is at least one Cauchy hypersurface of constant
areal time coordinate in plane and hyperbolic symmetric spacetimes. Moreover,
we show that the areal time coordinate R= t which covers these spacetimes runs
from zero at infinity with the singularity occuring at R = 0. The sources of the
equations are generated by a distribution function and a massless scalar field,
subject to the Vlasov and wave equations respectively.

1. Introduction

Consider the Einstein-Vlasov-scalar field system with spherical, plane and
hyperbolic symmetries. For more information on this system which describes
the evolution of self-gravitating collisionless matter and scalar waves within the
context of general relativity, see [6], [7], [8], where the system has been studied
in areal coordinates and global existences results were obtained directly. Three
types of time coordinates which have been studied in the inhomogeneous Einstein-
Vlasov system case are constant mean curvature, areal and conformal coordinates.
A constant mean curvature time coordinate t is one where each hypersurface of
constant time has constant mean curvature and on each hypersurface of this kind
the value of t is the mean curvature of that slice. In the case of areal coordinates
the time coordinate is a function of the area of the surface of symmetry. In the
case of conformal coordinates the metric is conformally flat on the manifold Q
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which is the quotient of spacetime by the symmetry group. Q is a two-dimensional
Lorentzian manifold.

Now consider the past maximal globally hyperbolic development of data on an
initial hypersurface, see [8]. Using conformal coordinates, we prove that along any
past inextendible timelike curve, the time coordinate R= t which is the area of the
symmetry orbits tends to a constant value R0 = 0, independent of which curve
is chosen. This was proved in the case of T 2-symmetric spacetimes with Vlasov
matter by [9] with results generalized later in some direction by [5].

Let us recall the formulation of the Einstein-Vlasov-scalar field system. We
consider a four-dimensional spacetime manifold M , with local coordinates (xα) =
(t, x i) on which x0 = t denotes the time and (x i) the space coordinates. Greek
indices always run from 0 to 3, and Latin ones from 1 to 3. On M , a lorentzian
metric g is given with signature (−,+,+,+). We consider a self-gravitating
collisionless gas and restrict ourselves to the case where all particles have the
same rest mass, normalized to 1, and move forward in time. We denote by (pα)
the momenta of the particles. The conservation of the quantity gαβ pαpβ requires
that the phase space of the particle is the seven-dimensional submanifold

PM = {gαβ pαpβ =−1; p0 > 0}
of T M which is coordinatized by (t, x i , pi). If the coordinates are such that the
components g0i vanish then the component p0 is expressed by other coordinates
via

p0 =
p
−g00

Æ
1+ gi j pi p j

The distribution function of the particles is a non-negative real-valued function
denoted by f , that is defined on PM . In addition we consider a massless scalar field
φ which is a real-valued function on M . The Einstein-Vlasov-scalar field system
now reads:

∂t f +
pi

p0 ∂x i f − 1

p0Γ
i
βγpβ pγ∂pi f = 0,

∇α∇αφ = 0,

Gαβ = 8πTαβ ,

Tαβ =−
∫

R3

f pαpβ |g|
1
2

dp1dp2dp3

p0
+
�
∇αφ∇βφ −

1

2
gαβ∇νφ∇νφ

�

where pα = gαβ pβ , |g| denotes the modulus of determinant of the metric gαβ , Γλαβ
the Christoffel symbols, Gαβ the Einstein tensor, and Tαβ the energy-momentum
tensor.

Note that since the contribution of f to the energy-momentum tensor is
divergence-free [3], the form of the contribution of the scalar field to the energy-
momentum tensor determines the field equation for φ.
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We refer to [4] for the notion of spherical, plane and hyperbolic symmetry.
We now consider a solution of the Einstein-Vlasov-scalar field system where all
unknowns are invariant under one of these symmetries. We write the system in
conformal coordinates. The circumstances under which coordinates of this type
exist are discussed in [2]. In such coordinates the metric g takes the form

ds2 = e2µ(t,r)(−d t2 + dr2) + R(t, r)2(dθ 2 + sin2
k θdϕ2) (1.1)

where

sink θ =





sinθ for k = 1 (spherical symmetry);

1 for k = 0 (plane symmetry);

sinhθ for k =−1 (hyperbolic symmetry)

Here the timelike coordinate t locally labels spatial hypersurfaces of the spacetime,
and each such hypersurface consists of all of the group orbits which have area R.
r ∈ R and (θ ,ϕ) range in the domains [0,π] × [0, 2π], [0, 2π] × [0, 2π],
[0,∞[× [0, 2π] respectively, and stand for angular coordinates. The functions µ
and R are periodic in r with period 1 and independent of θ and ϕ. It has been
shown in [2] that due to the symmetry, f can be written as a function of

t, r, w := eµp1 and F := R4
h
(p2)2 + sin2

k θ(p
3)2
i

,

i.e. f = f (t, r, w, F) and F is conserved quantity along particle orbits. In these
variables, we have p0 = e−µ

p
1+w2 + F/R2 =: e−µ〈p〉. The scalar field is a

function of t and r which is periodic in r with period 1.
We denote by a dot and by a prime the derivatives of the metric components and

of the scalar field with respect to t and r respectively. Using the results of [2], the
complete Einstein-Vlasov-scalar field system can be written in the following form:

∂t f +
w

〈p〉∂r f +
�
− µ̇w−µ′

�
〈p〉+ w2

〈p〉

�
+ e−2µR′

F

R3〈p〉

�
∂w f = 0, (1.2)

− R′′ + µ̇Ṙ+µ′R′ +
1

2R
[Ṙ2 − R′2 + ke2µ] = 4πRe2µρ, (1.3)

Ṙ′ − µ̇R′ −µ′Ṙ= 4πRe2µ j, (1.4)

R̈− R′′ +
1

R
[Ṙ2 − R′2 + ke2µ] = 4πRe2µ(ρ− p), (1.5)

µ̈−µ′′ − 1

R2 [Ṙ
2 − R′2 + ke2µ] = 4πRe2µ(p−ρ− q), (1.6)

φ̈ −φ′′ + 2
Ṙ

R
φ̇ − 2

R′

R
φ′ = 0 (1.7)
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where (1.7) is the wave equation in φ and

ρ(t, r) = e−2µT00(t, r)

=
π

R2

∫ +∞

−∞

∫ +∞

0

〈p〉 f (t, r, w, F)dFdw +
1

2
e−2µ(φ̇2 +φ′2), (1.8)

p(t, r) = e−2µT11(t, r)

=
π

R2

∫ +∞

−∞

∫ +∞

0

w2

〈p〉 f (t, r, w, F)dFdw +
1

2
e−2µ(φ̇2 +φ′2), (1.9)

j(t, r) =−e−2µT01(t, r)

=
π

R2

∫ +∞

−∞

∫ +∞

0

w f (t, r, w, F)dFdw − e−2µφ̇φ′, (1.10)

q(t, r) =
2

R2 T22(t, r)

=
2

R2 sin2
k θ

T33(t, r,θ)

=
π

R4

∫ ∞

−∞

∫ ∞

0

F

〈p〉 f (t, r, w, F)dFdw + e−2µ(φ̇2 −φ′2). (1.11)

We prescribe initial data at time t = t0:

f (t0, r, w, F) =
◦
f (r, w, F), µ(t0, r) =

◦
µ(r), µ̇= µ1(r)

R(t0, r) =
◦
R(r), φ(t0, r) =

◦
φ(r), φ̇(t0, r) =ψ(r), Ṙ(t0, r) = R1(r)

The equations (1.3), (1.4) are constraints and (1.5), (1.6) are the evolution
equations.

In [8], it is proved using areal time coordinates that ]0, t0] (t0 > 0) is the
past maximal existence interval of solutions of this system with the singularity
occurring at t = 0. In the case k < 0, some restriction on the initial data needed. In
[7], the evolution of the spacetime in the expanding direction is analysed. A global
existence theorem in areal time coordinates is proved for all t ∈ [t0,+∞[, where
t denotes the area radius of the surfaces of symmetry of the induced spacetime.
In [2] (theorem 6.1), it is proved in the case of hyperbolic symmetry with Vlasov
matter that (M , g) can be covered by symmetric compact hypersurfaces of constant
area radius. And the area radius of these hypersurfaces takes all values in ]t0,+∞[
where t0 > 0. Following these, [9] and [5], we prove (without any restriction in
the initial data) in the case of plane and hyperbolic symmetric spacetimes with
Vlasov-scalar field matter that t0 = 0, i.e. the area of the group orbits goes to zero
at the end of the maximal Cauchy development in the contracting direction. The
strategy will be to show that, given a C∞ solution to the Einstein-Vlasov-scalar field
system with metric (1.1) on ]0, t0]×S, where S is a 2-torus, or an hyperbolic plane,
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in the case of plane or hyperbolic symmetry respectively. Then for any t1 ∈ ]0, t0]
such that t1 > 0, the spacetime extends to t1. It will be convenient to fix t1 ∈ ]0, t0]
and to fix some arbitrary t2 ∈ [t1, t0]. If the metric, the matter content functions
and all their derivatives are continuously bounded, then it follows from [9] and
[5] (by a long chain of geometrical arguments), that the spacetime further extends
to the areal time interval (0, t0). The existence of conformal symmetries has the
effect of simplifying the resulting system of partial differential equations and thus
making the integration process simpler.

2. C∞-bounds of Quantities

Let a smooth solution of the system (1.2)-(1.11) be given on some time interval
(t1, t0]. We want to show that if this interval is bounded and if R is bounded away
from zero on this interval then f , R, µ, φ and all their derivatives are bounded as
well with bounds depending on the data and the lower bound on R.

Lemma 2.1. Let D+ = ∂t + ∂r ; D− = ∂t − ∂r ; X = R(φ̇ − φ′); Y = R(φ̇ + φ′);
a = −Ṙ+R′

R
; b =− Ṙ+R′

R
.

Then as a consequence of the wave equation (1.7), X and Y satisfy the system

D+X = aY (2.1)

D−Y = bX (2.2)

Lemma 2.2. Let D+, D−, a, b, X and Y be defined as in the previous lemma. Set
a1 = ∂r a, b1 = ∂r b, X1 = ∂r X and Y1 = ∂r Y .
Then using Lemma 2.1 and the field equations (1.3), (1.4), X1 and Y1 satisfy the
system

D+X1 = aY1 + a1Y (2.3)

D−Y1 = bX1 + b1X1 (2.4)

with

a1 = (µ
′ − µ̇)a+ ab− R′a

R
− e2µ

2R2 − 4πe2µ(ρ+ j);

b1 =−
(µ′ + µ̇)b+ R′b

R
+

ab

2R
− e2µ

2R
+ 4πRe2µ( j −ρ).

Proof. ∂r a = R′′−Ṙ′−R′a
R

. Add equations (1.3) and (1.4) to replace the term R′′ − Ṙ′

and obtain a1.
Analogously, ∂r b = −R′′+Ṙ′+R′b

R
. Subtract equations (1.3), (1.4) to replace the

term R′′ + Ṙ′ and obtain b1. A direct calculation gives (2.3) and (2.4). ¤

Now, we define an auxiliary variables τ := 1p
2
(t − r), ξ := 1p

2
(t + r). Then

∂τ :=
1p
2
(∂t − ∂r) and ∂ξ :=

1p
2
(∂t + ∂r).

The analysis which follows is modeled on the one in [2].
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Step 1: Uniformly C1-bounds on R.
Using (1.3) and (1.4), we obtain after a short calculation

∂r(∂ξR) =
1p
2
(Ṙ′ + R′′)

=
�p

2∂ξµ+
1p
2
∂τR
�
∂ξR−

1

2
p

2R
e2µ − 2

p
2πRe2µ(ρ− j)

<

�p
2∂ξµ+

1p
2
∂τR
�
∂ξR (since | j|< ρ).

If Rξ(t, r) = 0 for some t ∈ ]t1, t0] and r ∈ R, then by the periodicity of R with
respect to r,

0= ∂ξR(t, r + 1)< ∂ξR(t, r)exp
�∫ r+1

r

�p
2∂ξµ+

1p
2
∂τR
�

ds
�
= 0,

a contradiction. Thus ∂ξR 6= 0 on ]t1, t0]× S. Similarly

∂r(∂τR) =
1p
2
(Ṙ′ − R′′)

=−
�p

2∂τµ+
1p
2R
∂ξR
�
∂τR+

1

2
p

2R
e2µ + 2

p
2πRe2µ(ρ+ j)

>−
�p

2∂τµ+
1p
2
∂ξR
�
∂τR (since ρ+ j > 0).

This yields the same assertion for ∂τR. This implies that the quantity

gαβ∂xαR∂xβR= e−2µ(R′2 − Ṙ2) =−2e−2µ∂ξR∂τR

does not change sign. Since R is periodic and continuous in r, there must exist
points where R′ = 0, hence the quantity above is negative everywhere, and by our
choice of time direction,

Ṙ> 0, |R′|< Ṙ on (t1, t0]× S. (2.5)

By (1.5) and the fact that ρ ≥ p,

∂τ∂ξR=−
1

2R
∂τR∂ξR+ e2µ

�
1

R
+ 4πR(ρ− p)

�
>− 1

2R
∂τR∂ξR.

We fix some (t, r) ∈ (t1, t0]×R. Then for s ∈ [t1, t),

d

ds
∂ξR(s, r + t − s) =

p
2∂τR∂ξR(s, r + t − s)

>− 1

2R(s, r + t − s)
∂τR(s, r + t − s)∂ξR(s, r + t − s)

>− 1p
2

d

ds
[ln R(s, r + t − s)]∂ξR(s, r + t − s).



On the Area of Symmetry Orbits of the Einstein-Vlasov-Scalar Field System with Plane & Hyperbolic Symmetry 137

Integrating this differential inequality yields

∂ξR(t, r)<
R(t0, r + t − t0)

R(t, r)
∂ξR(t0, r + t − t0).

Similarly,

∂τR(t, r)<
R(t0, r − t + t0)

R(t, r)
∂τR(t0, r − t + t0).

Both estimates together imply that Ṙ is bounded from above on (t1, t0]× S with a
bound of the desired sort. This provides from (2.5), bounds for R′.

Step 2: C1-bounds on φ.

Proposition 2.3. Let a, b, X and Y be defined as in Lemma 2.1 and

m(t) = sup{(|a|, |b|)(t, r); r ∈ R}

K(t) = sup{(|X |+ |Y |)(t, r); r ∈ R}.
If (X , Y ) is a solution of (2.1) and (2.2) with

X (t0) =
◦
R(r)(ψ(r)−

◦
φ′(r))

and

Y (t0) =
◦
R(r)(ψ(r) +

◦
φ′(r))

then for any t ∈ (t1, t0], we have

K(t)≤ K(t0) +

∫ t0

t

m(s)K(s)ds (2.6)

Proof. It is similar to c.f. ([6, Proposition 2.3, p. 697]). The characteristic curves
(t,γi(t)), i = 1, 2 of the second order partial differential equation (1.7) satisfy
the differential equation γ̇i = ±1. On these characteristic curves, we have from
Lemma 2.1, D+ = D− = d

d t
. Then (2.1)-(2.2) become





d

d t
X (t,γ1(t)) = aY (t,γ1(t))

d

d t
Y (t,γ2(t)) = bX (t,γ2(t))

Integrate this system on [t, t0], take the absolute value in each equation,
add the two inequalities and take the supremum (in space) of each term to
obtain (2.6). ¤

Since a and b are bounded by Step 1, we deduced from (2.6) and the Gronwall
lemma that K(t) is bounded. Then X and Y are bounded. Since R is bounded away
from 0, we conclude that φ̇ and φ′ are bounded. Then φ is bounded.
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Step 3: C1-bounds on µ.
From (1.5)-(1.6) we find

∂τξµ=−
1

R
∂τξR− 2πe2µq.

We fix some (t, r) ∈ (t1, t0[×R. Then for s ∈ [t1, t),

d

ds
∂ξµ(s, r + t − s) = ∂t∂ξµ− ∂θ∂ξµ

=
p

2∂τξµ

=−
p

2

R

d

ds
∂ξR(s, r + t − s)− 2

p
2πe2µq(s, r + t − s).

Integrating this and integrating by parts the term containing ∂ξR yields

∂ξµ(t, r) = ∂ξµ(t0, r + t − t0) +
p

2
∂ξR(t0, r + t − t0)

R(t0, r + t − t0)
−
p

2
∂ξR(t, r)

R(t, r)

+
p

2

∫ t0

t

�
2πe2µq−

∂τR∂ξR

R2

�
(s, r + t − s)ds. (2.7)

We know that∫ t0

t

∂ξ∂τR(s, r + t − s)ds =

p
2

2
(∂ξR(t0, r + t − t0)− ∂ξR(t, r)). (2.8)

The right hand side of the previous relation is bounded.
Note that ∂ξ∂τR= 1

2
(R̈− R′′). Then (1.5) gives

∂ξ∂τR=
1

2
(R̈− R′′) =

1

2R
[−(∂tR)

2 + (∂rR)
2 − ke2µ] + 4πRe2µ(ρ− p);

and the left hand side of (2.8) can be written as
∫ t0

t

�
1

2R
[−(∂tR)

2 + (∂rR)
2]− k

2R
e2µ + 4πRe2µ(ρ− p)

�
(s, r + t − s)ds.

Here the first term is bounded by Step 1. The second and third terms are non-
negative (k = 0 or k = −1) and therefore are bounded by (2.8). Thus by (1.11),
(1.8), (1.9) and Step 2,

∫ t0

t

e2µq(s, r + t − s)ds ≤
∫ t0

t

�
1

R2 e2µ(ρ− p) + φ̇2 −φ′2
�
(s, r + t − s)ds

is bounded as well since R is bounded away from zero. Thus (2.7) implies that ∂ξµ
is bounded. Analogously to (2.7), we have

∂τµ(t, r) = ∂τµ(t0, r − t + t0) +
p

2
∂τR(t0, r − t + t0)
R(t0, r − t + t0)

−
p

2
∂τR(t, r)
R(t, r)

+
p

2

∫ t0

t

�
2πe2µq−

∂τR∂ξR

R2

�
(s, r − t + s)ds (2.9)
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from which we can conclude that ∂τµ is bounded. Therefore µ̇, µ′ and µ are
bounded.

Step 4: bounds on matter quantities ρ, p, j, q.
We have for any t ∈ ]t1, t0], r ∈ R, w ∈ R, F > 0,

f (t, r, w, F) = f (t0,Θ(t0, t, r, w, F), W (t0, t, r, w, F), F)

where (Θ(·, t, r, w, F), W (·, t, r, w, F)) is the solution of the characteristic system
(

ṙ = w
〈p〉

ẇ =−µ̇w−µ′(〈p〉+ w2

〈p〉 ) + e−2µR′ F
R3〈p〉

of the Vlasov equation with Θ(t, t, r, w, F) = r, W (t, t, r, w, F) = w. This
representation of f implies that f is non-negative and bounded by its maximum
at t = t0. By Steps 1 and 3 the right hand side of the second equation in the
characteristic system is linearly bounded in w. If the w-support of f is compact i.e.
if

sup{|w|/(r, w, F) ∈ supp f (t), t ∈ ]t1, t0]}<∞,

then by Step 2, ρ, p, j and q are bounded.

Step 5: bounds on second order derivatives of φ.

Proposition 2.4. Let a1, b1, X1 and Y1 be defined as in Lemma 2.2 and m(t), K(t)
be defined as in Proposition 2.3. Set

u1(t) = sup{(|a1|, |b1|)(t, r); r ∈ R}

A1(t) = sup{(|X1|+ |Y1|)(t, r); r ∈ R}.

If in addition to the assumptions of Proposition 2.3 the quantities X1 and Y1 satisfy
(2.3)-(2.4) and agree with ∂r X and ∂r Y respectively for t = t0 then:
If t ∈ ]t1, t0], we have

A1(t)≤ A1(t0) +

∫ t0

t

u1(s)K(s)ds+

∫ t0

t

m(s)A1(s)ds (2.10)

Proof. Analogous to the proof of Proposition 2.4 using this time Lemma 2.2.
Since m(t), u1(t) and K(t) are bounded by previous steps, we deduced from (2.10)
and the Gronwall lemma that A1(t) is bounded. Then X1 and Y1 are bounded. Since
R is bounded away from 0, we conclude using the C1-bounds of R and φ that φ̇′

and φ′′ are bounded. The bounds of φ̈ is deduced from the wave equation (1.7).

Step 6: bounds on second order derivatives of R and µ.
Steps 1, 2, 3 and 4 together with (1.2), (1.3) and (1.4) imply respectively that R′′,
Ṙ′ and R̈ are bounded on (t1, t0]×S. Now subtract equations (2.7)-(2.9) to obtain
a formula for µ′. When this formula is differentiated with respect to r there results
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a number of terms which are bounded by the previous steps and the terms

2π

∫ t0

t

e2µ π

R4

∫ ∞

−∞

∫ ∞

0

F

〈p〉∂r f (s, r + t − s, w, F)dFdwds (2.11)

2π

∫ t0

t

e2µ π

R4

∫ ∞

−∞

∫ ∞

0

F

〈p〉∂r f (s, r − t + s, w, F)dFdwds (2.12)

We introduce the differential operators W =
p

2∂τ = ∂t − ∂r , S = ∂t +
w
〈p〉∂r . We

have ∂r =
〈p〉
〈p〉+w

(S −W ). By the Vlasov equation,

S f (s, r + t − s, w, F)

=

�
µ̇w+µ′(〈p〉+ w2

〈p〉 )− e−2µR′
F

R3〈p〉

�
∂w f (s, r + t − s, w, F).

When this is substituted into (2.11), the resulting term can be integrated by parts
with respect to w, and all the terms which then appear are bounded by the previous
steps. Next we have

(W f )(s, r + t − s, w, F) =
d

ds
[ f (s, r + t − s, w, F)],

so that the corresponding term in (2.11) can be integrated by parts with respect to
s which again results in bounded terms. In order to deal with (2.12), we replace
w by −w and the rest of argument should then be obvious, and µ′′ is seen to be
bounded on (t1, t2]×S. By (1.6), µ̈ is bounded. Adding equations (2.7) and (2.9)
gives the formula for µ̇. Therefore µ̇′ can be dealt with like µ′′.

Step 7: Higher order derivatives.
Using the characteristic system of Step 4, C2-bounds on R and µ give bounds on
the first order derivatives of Θ(·, t, r, w, F) and W (·, t, r, w, F) with respect to r, w,
F . This yields corresponding C1-bounds first on f and then as in Step 4 and using
Step 5, on ρ, p, j, q. These in turn imply C3-bounds on R. Iterating process in
Step 5 deals C3-bounds on φ. The third order derivatives of µ then have to be
dealt with by repeating the argument of Step 6. This process can be iterated to
bound any desired derivative on (t1, t0]× S in terms of the data at t = t0 and the
positive lower bound on R.

Later will require a slight generalization of these results in order to show that
the arguments of section 5 of ([2]) generalize to cover the case of Vlasov-scalar
field system. Once it has been established in Step 1 that the gradient of R is timelike
on a region which is covered by Cauchy surface of constant conformal time, the
estimates in the later steps hold for any future subset Z of the half-plane t ≤ t0

provided Z is a future set. This means by definition that any future directed causal
curve in the region t ≤ t0 starting at a point of Z remains in Z . Thus if R is
bounded away from zero on Z and t is bounded on Z then all the unknowns and
their derivatives can be controlled on Z .
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With the presence of the scalar field, the maximal Cauchy development of initial
data on a hypersurface of constant conformal time is not a union of hypersurfaces
of constant conformal time. Its past boundary is in general of the form t1 = h(r)
where h is a non constant function. We suppose that h has a lower bound.

Consider a special choice of Z defined by

Z =
�
(t, r) ∈ R2; t1 ≤ t ≤ t0, r1 + t0 − t < r < r2 − t0 + t;

r1 < r2, t0 −
r2 − r1

2
< t1

�
.

Suppose a solution of the system in conformal coordinates defined on Z is such
that R is bounded away from zero. Then the solution extend smoothly to the
boundary of Z at t = t1. They define smooth Cauchy data for the system.
Applying the standard local existence theorem (without symmetry) allows the
solution to be extended through that boundary. Repeating the construction of the
conformal coordinates then shows that we get an extension of the solution written
in conformal coordinates through that boundary.

Theorem 2.5. Let (M , g, f ,φ) be the maximal globally hyperbolic development of
initial data for the Einstein-Vlasov-scalar field system with surface symmetry. Then M
can be covered by symmetric compact hypersurfaces of constant area radius. The area
radius of these hypersurfaces takes all values in the range ]0,+∞[.

Proof. Suppose that t1 = t0. From the bound on the support of the distribution
function and the C∞ bounds obtained previously, it follows that there is a
C∞ extension of the metric functions and the matter distribution-scalar field
functions to t1 satisfying the system. Therefore {t1}×S is contained in the Cauchy
development of any Cauchy surface in ]t1,∞[×S. This contradicts the fact that
the Cauchy development does not extend to {t0} × S. Since t1 was allowed to be
any positive number in [t0,∞[, it must be the case that t0 = 0. ¤

3. Conclusion

Since all metric functions, the Vlasov field, the scalar field and all their
derivatives have been shown to be uniformly bounded, the maximal Cauchy
development cannot have t1 > 0. Therefore, (M , g) admits a global foliation by
areal coordinates with the time coordinate t taking all values in (0, t0), i.e. t1 = 0,
see [9], [5]. This result was obtained in the hyperbolic case without any restriction
on the initial data.
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