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Second Order Duality in Mathematical Programming
with Support Functions

I. Husain and M. Masoodi

Abstract. Wolfe and Mond-Weir type second order dual programs are formulated
for a non-linear programming problem in which the objective as well as each of
constraint functions contain a term of a support function. Special cases are also
deduced from our results.

1. Introduction

Many authors have studied duality for class of nonlinear programming problems
in which the objective function contains a differentiable convex function along
with either a positive homogenous function or the sum of positive homogenous
functions, e.g., Sinha [22], Zhang and Mond [24], Mond [11, 12], Chandra and
Gulati [5] and Mond and Schechter [16, 17]. These authors have introduced
the square root of positive semidefinite quadratic form (x”Bx)Y? or a norm
term of the type ||Px|| as a positive homogenous function. The popularity of this
kind of problem stems from the fact that, even though the objective function
and/or constraint functions are nondifferentiable, the dual problem comes out
to be a differentiable problem and hence is more amenable to handle from the
computational point of view. Also as demonstrated by Sinha [22], these problems
have applications in the modelling of certain stochastic programming problem.
While most of these studies have considered only the Wolf type of dual, Chandra
et al. [4] studied duality for such problems in the spirit of Mond and Weir [18] in
order to relax convexity conditions assumed in aforecited references.

Mangasarian [9] was the first to identify a second order dual formulation for
non-linear programs under the assumptions that are complicated and somewhat
difficult to verify. Mond [13] introduced the concept of second order convex
functions (named as bonvex functions by Bector and Chandra [2] and studied
second order duality for nonlinear programs.
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Mond and Schechter [17], studied symmetric duality for nondifferentiable
problems containing support functions of certain compact convex sets instead of
the usual term of the type (x”Bx)'/? or ||Px||. Further Husain, Abha and Jabeen
[7] studied the duality for nondifferentiable nonlinear programming problem in
which the objective as well as the constraint functions contains a term of a support
function. Subsequently, Husain and Jabeen [8] studied its fractional case.

The purpose of this paper is to formulate Wolfe and Mond-Weir type second
order dual for a nonlinear programming problem in which the objective and the
constraint functions contains a term of a support function and establish various
duality results for each pair of dual problems. It is well known that second order
dual enjoys computational advantage over a first order dual. It is pointed out that
duality results obtained in [7] become special cases of our results.

2. Notations and Preliminaries

In this section, we mention some notations to be used in the analysis of our
exposition and recourse some preliminaries for easy references.

Definitions. (i) Support function: Let C be compact convex set in R". The
function S(x/C) given by
S(x/C)=Maxi{zTx:2€C},
is called a support function of C.

It may be noted that the support function S(x/C) is a non differentiable
convex function and has sub-differential given by

2S(x/C)=1{zeC:2Tx =5(x/C)}.
(i) Normal cone: For any set x € R", the normal cone to X at a point x € X is
defined by
Ny(xX)={y:y"(z—x)<0, VzeX}

It can be easily seen that for a compact convex set C, y € Ng(x) iff
S(y/C)=xT"y, or equivalently x is subdifferential of S(y/C).

(iii) Second order convex (Bonvex): Let f be a real valued twice differentiable
function defined on an open set X C R", then f is said to be second order
convex, if for all x,p,u € R"

fO) = fw) = (x —w)' [V (W) + V*f (wp]l —1/2p" V2 f (W)p.
(iv) Second order concave (Boncave): Let f be a real valued twice differentiable
function defined on an open set X € R", then f is said to be second order
concave, if for all x,p,u €R"

OO = f < (x =)' [VF()+ V*f(Wp] —1/2p" V2 f (wp.

(v) Second order pseudoconvex (Pseudobonvex): Let f be a real valued twice
differentiable function defined on an open set X € R", then f is said to be
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second order pseudoconvex, if for all x,p,u € R"
(x =W [Vf(@+V*f(wpl 2 0= f(x) = f(u)—1/p"V*f (Wp.

(vi) Second order quasiconvex (Quasibonvex): Let f be a real valued twice
differentiable function defined on an open set X € R", then f is said to be
second order pseudoconvex, if for all x,p,u € R"

fO) = fw+1/2p" VA (Wp < 0= (x —wW)'[Vf(u) + VAf (wp] < 0.

(vii) Second order quasiconcave (Quasiboncave): Let f be a real valued twice
differentiable function defined on an open set X € R", then f is said to be
second order quasiconcave, if for all x,p,u € R"

fO) = fw+1/2p" V2 (Wp = 0= (x —w)'[Vf(u)+ Vf (wp] > 0.

Let f :R" > Rand g; : R" = R (j = 1,2,...,m) be subdifferentiable functions.
Let C be a compact convex set in R". Then consider the following nonlinear
programming problem:

(P)  Min f(x)

subject to
gi(x)<0 (j=1,2,...,m)

xeC

The following lemmas relating to (P) will be used here:

Lemma 2.1 ([22]). If X is an optimal solution for (P), then there exist A € R, and
u € R, such that

0€A0f(2)+ Y 1;08;(%) + Ne(%)
=1

m

A+Zuj>0

=1
u;gi(x)=0, j=1,2,...,m.

Lemma 2.2 ([22]). If X is an optimal solution for (P), and a suitable constraint
qualification [10] holds for (P), then there exist non negative constants u; (j =
1,2,...,m), such that

0€df(x) +Zujag,»(fc) + Ng (%)

j=1
u;g;(x)=0, j=1,2,...m.

It is to be noted that under the conditions of convexity on the functions f and g;
(j=1,2,...,m), these necessary conditions are also sufficient for the optimality of
X for (P).
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3. Non Differentiable Programming Problem Containing Support Functions
and Duality

Let f : R" > Rand g; : R" —» R (j = 1,2,...,m) be twice differentiable
functions. Let C and D; (j = 1,2,...,) be compact convex sets in R". We consider
the following nondifferentiable nonlinear programming problem:

(NP) Min f(x)+S(x/C)
subject to
gi(x)+S(x/D;)<0, (j=1,2...,m). 3.1
In studying duality for (NP) certain optimality conditions in the non-smooth

setting will be required. These conditions which can be derived from [22] along
with the application of Lemma 1 and Lemma 2 are as follow:

Theorem 3.1. If X is an optimal solution for (NP), then there exists @ €R, Z € C,
Y E€R"andw; € D; (j =1,2,...,m) such that

A(VF(R) +2)+ Y 7;(Vg;(%) +w;) =0,

j=1

7i(Vg;(R) +w] (X)) =0,
j=1

J
2T (x)=S(%/C) and w}(;z):su/pj), Vi=1,2,....,m

(a,y)=0, (a,y)#0.
When a suitable constraint qualification holds for (NP) the above Fritz John

optimality conditions reduces to the Karush-Kuhn-Tucker optimality conditions, as
this asserts positiveness of the multiplier a associated with the objective function.

3.1. Wolfe type duality

Consider the following nonlinear program, which we shall prove to be a dual
program to (NP)

(WD) Max f(u)+z"u+ iyj(gj(u) +w (W) - %pTVZ(f (W) +y"g)p
subject to ~
V(f (W +z"u)+ i ¥;V(g;) +w))+ V3(f (W) + y"gw)p =0, (3.2)
¥y =0, - (3.3)
z€C,w;€D; (j=1,2,...,m) 3.4

Theorem 3.2 (Weak Duality). Let x be feasible for (NP) and (u, 2, ¥, p, W1, Wq, ..., W)
be feasible for (WD) and let for all feasible (x,z,y,p, w1, Wy, ...,wp,), f(-) and g;(*)
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(j=1,2,...,m) be second order convex, then

FO)+S(x/C) = fw) +2"u+ ) y;(g;w) +w! (@) —1/2p" V2(f (w) + y " g(w))p.
j=1

ie.,

infimum (NP) > supremum (WD) .

Proof. Let x be feasible for (NP) and (u,z,y,p,w;,Ws,...,w,,) be feasible for
(WD), therefore, from second order convexity of f(-) and g;(-), (j = 1,2,...,m)
we have

(f(x) +y"glx)+ Zijij) - (f(u) +yTg+ ZJ’J’WJ-T“)
j=1 j=1

> ywl(x —u) = 1/2p" VA(F (W) + y" g(u)p)
=1
+x —wI(VF+Vy g+ V(@ +y gip)l. 3.5
Now from the dual feasibility, we have

(x —W(Vf W)+ Vy' g+ V2(f (u) + ¥ g)p)

=—(x—uw)Tz— ZijjT(x —u) (3.6)
=

Therefore from (3.5) and (3.6) we get

(f(x) +yTg(x)+ Zijij) - (f(u) +ylgw)+ Z}’joTU)
j=1 j=1
> —(x ~w)'z - 1/2p"V*(f (W) + y" g(W)p

ie.,

(F)+2") - (fF+z"u+y g+ ZijjTu —1/2p"V2(f (w) + y " g(w)p)

j=1
m
> ( —y'glx)— Zy,-ijX)
=1
but S(x/C) > z" x, whenever z € C and S(x/D;) = W].Tx, whenever w; € D;, which

implies that

02> g,(x)+5(x/D;) > g(x) +w''x
0> y;(g,) +S(%/D))
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m
0= y;g()+ Y. ywix=y"glx)+ Y ywlx
j=1

m

yiglx)+ Zijij <0.
=1

As y =0, we get

(_yrg(x) - Zijij) >0.

j=1

Hence

(FO)+2"x) > (f(u) +2Tu+y g+ ) ywlu—1/2p"V(f (W) + yTg(u))p)

j=1
infimum (NP) > supremum (WD). O

for (WD).

Theorem 3.4 (Strong Duality). Let x be optimal for (NP) and the suitable
constraint qualification [10] hold. Then there exists 2 € C, y € R™, w; € D,
(j=1,2,...,m) such that (x,%,y,p =0,wy,W,,...,w,,) is feasible for (WD) and
the objective function values of (NP) and (WD) are equal. Further if the hypotheses
of Theorem 3.2 hold then (x,2,¥,p = 0,W,W,,...,Ww,,) is an optimal solution for

(WD).

Proof. Since x be an optimal solution for (NP) and a suitable constraint
qualification [10] holds for (NP), then there exists 2 € C, y € R}, w; € Dj,
(j=1,2,...,m) such that

VFE) +E+ Y 5(Vg;(E)+Ww)) =0,
j=1

m

D (g +wl ) =0,

j=1

2Tx =8(x/C), and w]T;'c =S(x/D)), Vj=1,2,...,m

~

Hence (x,%,¥,p = 0,Ww,,Wsy,...,W,,) is feasible for (WD) and
m
FER+5T%+ Y 7(g(R) + W) = £(2) +S(%/C).
=1

That is, the objective function values of (NP) and (WD) are equal. Remainder of
the proof now immediately follows from Corollary 3.3. O
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3.2. Second order converse duality

In this, we establish converse duality theorem which yields the solution of (P)
from the solution of (WD).

Theorem 3.5 (Converse Duality). Let (ii,Z,¥,p,W;,Ws,...,W,) is optimal

for (WD) and the Hessian matrix V? (f(ﬁ)—l—Zngj(ﬂ) be non-singular
j=1
and V2 (sz(a)+v2 > ngj(ﬁ)) be either positive or negative definite. Then

Z ¥;g;(@) +S(it/D) = 0, and ii is feasible for (NP) and the objective function values

of (NP) and (WD) are equal. Further if the hypotheses of Theorem 3.2 hold then i is
an optimal for (NP).

Proof. First we rewrite problem (WD) in the form of (P), for this let ¢ =
(U, 2, Y, P, Wy, Wa, ..., W,,) € RETMMHM anq

F(q) = (f@)+2" @)+ y;(g;(@) + Wl @) — 1/2p" V*(f (@) + y" g(@))p,

j=1

Gl@=(Vf@+2)+ Zj'j(vgj(ﬁ) +w;)+ VA(f (@) + 3" g(@)p,
=1
H(g) = -y.
Let the set S be defined by S = {q : ¢ = (w,2,y,p,W;,Wq,...,Wp), 2 € C,
w;€D;,Vj=12,... m}, then problem (WD) may be rewritten as follows:
Max F(q)
subject to
G(g)=0,
H(q) <0,
qESs.

As g = (4,%,y,p,Wy,Ws,...,W,,) is optimal for (WD), from Lemma 1, there
exist constants a > 0, u; = 0, j=1,2,...,mand 4;,1=1,2,...n, not all zero, and
the normal cone to S at g as Ng(q) such that

- a(Vf(u)+Z)+ZyJ(VgJ(U)+W )= 1/2Vp" VA(f (@) + 5" g(@)p

j=1
+(V2f (@) + V23T g@)A+ AV(VAf (@) + V23T g(@)p =0 (3.7)
—a(—(V*f(@)+ V23" g(@)p) + MV2f (@) + V23" g(@) =0 (3.8)

—a(g;(@+wa—1/2p"V?g;(@p) + A(Vg;(@) +w; + Vg;(@)p)
—u;=0,vj=12,...m (3.9
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—ail 4+ A € N.(2), (3.10)
—aiy; + Ay; € Np (w;), (3.11)
ujy;=0,Vj=12,...,m (3.12)

From (3.8) we have,
(ap + (V2 f (@) + V5" g(@) =0,

But from nonsingularity of the matrix (V2f (1) + V2yT g(1)) we have (ap + 1)
= 0. If possible, let a = 0 then A = 0. From these values, (3.9) implies u; = 0,
Y j =1,2,...m, which makes all the multipliers equal to zero. Since this cannot
happen as it contradicts (a, A, u) # 0. So we must have a # 0, so a > 0.

Using the equality constraint of the dual problem in equation (3.7) we have,

al(V2(f(@)+ 3" g@)p) — 1/2p" VA(f (@) + y " g(@))p]
+(V2f (@) + V27" g(@)A + AV(V2f (@) + V23T g(@)p = 0.

This can be written as
(ap+ (V@ +y @)+ (1= 5 ) VP @+y g@)p) = 0.
This along with ap + A = 0 yields,
V(TR @)+ 5" g@)p) =0.
Because of positiveness of a. This equation is simplified as
p'V(VA(f(@)+ 5" g(@)p) =0

which by the condition of V (V2(fii+ yT g(i1))) to be either positive or negative
definite implies p = 0. Now (ap + A) = 0, hence A = 0. Then equation (3.9)
implies that

(—a+ Mg @ +w}+ (=5 +2) Ve @p -
—a(Vgi(@)+w;)+0=pu,

Vg(@)+w; = —% <0,
gG@+w/a<0,Vj=1,2,...m

Now from (3.10) and (3.11) we have & € N.(%) and u € ND]_(M'/]») so that
70 =5(a/C), w'a=S(a/D,),V j=1,2,...,m. Hence

gi@+w/a=g(@+8@/D;)<0,Vj=1,2,...,m,

which implies that @ is feasible for problem (NP). Also from (3.9) and (3.12) we
get

yj(gj(a)'i'ijﬁ)ZO, j=1,2,...m.
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Therefore

(f@+z"a)+ Zyj(gj(a) +w; @) —1/2p" VA(f (@) + 7" g(@)p

j=1
= f(@)+S(a/C).
This by Corollary 1 implies that i is optimal for (NP). U
3.3. Mond and Weir type duality

We state the following problem as a Mond-Weir type second order dual for the
problem (NP).

(SMWD) Max f(u)+zu—1/2pT V2(f (w)p

subject to

VW) +z+ Y y(Vg ) +w)+VA(F ) +y gw)p =0, (3.13)

j=1
m
Dy +wlu) = 1/2p" v3(y T g(w))p > 0, (3.14)
j=1
y =0, (3.15)
ZGC,WJED,ijl,Z,...m (3.16)

Theorem 3.6 (Weak Duality). Let x be feasible for (NP) and (u,2, ¥, p, W1, Wa, ..., W)
be feasible for (SMWD) and let for all feasible (x,u,z,y,p, W1, W, ..., W) to (NP)

and (SMWD), f(-)+ (-)"z is second order pseudoconvex and . yi(g;()+ (-)ij) is
j=1
second order quasiconvex, then
T L roo
fO)+SGe/Dy) 2 fw)+=z u—5p Vof(Wp.

Proof. By the primal feasibility of x and dual feasibility of (u, 2, y, p, w1, Wq, ..., W),
we have

m m
1
27180 +5(/D)) < 3 1yi(8;() +wuw) = - p Yy g
j=1 j=1
This in view of WJTX <S(x/D;),V j=1,2,...,m, gives

z 1
Yi(gi ) +wix) < D (g0 +wlw) = p VA Tgwp.  (3.17)
1 j=1

J

m
Because of second order quasiconvexity of . yi(g;()+ (O 1), (3.17) yields,
j=1

(x—uw)’ (Zyj(vgj(u)+wj)+V2(yTg(u))p) <o0.

j=1
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This is conjunction with (3.13), we get
(x —w)"(Vf(u)+2+ V*(f(w)p) 20,

which by second order pseudoconvexity of f () + (-)Tz gives
1
FO)+2Tx>fw)+z"u— EpTVZf(u)p.
Since 2T x < S(x/C), as earlier, we have

FG)+S(x/C) 2 fu) +5Tu— 2p V2 F(wp. 0

optimal for (SMWD).

Theorem 3.8 (Strong Duality). Let x be optimal for (NP) and the suitable
constraint qualification holds for (NP). Then there exists Z € C, y € R", w; € D;
(j=1,2,...,m)such that (x,2,¥,p = 0,wy,Ww,, ..., w,,) is feasible for (SMWD) and
the objective function values of (NP) and (MWD) are equal. Further if the hypotheses
of Theorem 3.6 hold then (x,2,¥,p = 0,w,,W,, ..., w,,) is optimal for (SMWD).

Proof. Since x be optimal for (NP) and the suitable constraint qualification holds
for (NP), then there exists z € C, y €R"}, w; € D; (j = 1,2,...,m) such that

VFE) +E+ ), 7,(Vg; () + W) =0,
j=1

m
D (g +wlx) =0,
j=1
2Tx =8(x/C), and ijx =S(x/D)),Vj=12...,m

Hence (x,%,y,p = 0,Ww,,W,,...,Ww,,) is feasible for (MWD) and

f)+2"x - %pTvzf(fc)p =f(x)+S(x/C).

Therefore the objective function values of (NP) and (SMWD) are equal. Rest of the
proof now follows from Corollary 3.7. 0

3.4. Second order converse duality

In this section, we shall validate a second order converse duality theorem.

(SMWD) at which



(Hy):

(Hy):

(H;):

Second Order Duadlity in Mathematical Programming with Support Functions 193

(a) the n x n Hessian matrix Vz(

1M

ngj()‘c)) is positive definite and

m
p" 2 ¥,(g;(®) +w;) = 0, or
j=1
. . 2 _T - . . . .
(b) the Hessian matrix V (yj gj(x)) is negative definite and
m
PV Y ¥(Vg() +w) <0,
j=1

the set {[V2f(x)];, [V2(7g(x)];li = 1,2,...,n}, of vectors is linearly
independent, where [V2f (x)]; is the ith row of [V2f (x)] and [V2(yT g())];
is ith row of the matrix [V2(yT g(x))].

the vectors ) y;(g;(X)+w;) #0
=1

If for dll feasible (x,2,y,u,wy,Ws,...,W,,p), f() + ()T is second order

pseudoconvex and Y. yi(g;()+ (')TW]-) is second order quasiconvex, then X is an

j=1

optimal solution of the problem (NP).

Proof. Since (x,%,y,w), where w = (W, W,,...,Ww,,) is an optimal solution of
(SM-WD), by generalized Fritz John necessary optimality conditions [10], there
exists, a €R, f €R", 6 €R, and u € R™, such that

1
a {—(f(fc) +8)+ 25"V [VA(F ()] }
+BT{VA(F () + 7" g(%) + V(VA(F (2) + 7" g(2))p)}
il 1
- G{Zyj(ng(fc) +w;) — EﬁTV[(VZ(yTg(fc)))pJ} =0, (3.18)
j=1
BIV(g;(X)+w;)+ V2g;(X)p}

—9T = =T - _l—T 2, (=l o, — .
gj(X)+x;w; 2png(X)p p;=0, j=1(1)m, (3.19)

(ap+PB)'VF(X)+(6p+B) V3 (78(x) =0, (3.20)
L 1

9{ Zf’j(gj(ff) +3_CjTVT/j) - Ef’Tsz_’j(gj(f))f’} =0, (3.21)
j=1

MT}_’ =0, (3.22)

—ax+fp eN.(2), (3.23)

(B—=0)y;, xeNp (w)), j=1,(1)m, (3.24)

(a,0,u)=>0, (3.25)

(a,3,0,u) #0. (3.26)

The relation (3.20), in view of assumption (A,) yields,

ap+pBf=0 and 6p+f=0. (3.27)
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Multiplying (3.19) by y;, and summing over j, we get

ﬁT{Zyj(V(g,-(fc) +W))+ vz(yTg(sc))p)}

j=1

m 1 _ _ B _ ]
- G{Zyj(g,-(fc) + 5] )) - Epvz(yTg(x))p} =0, j=1(D)m. (3.28)
i=1
Using (3.21) in the above relation, we get,

ﬁ{ZyJ(V(gj(f)wvj)+v2yTg(fc)p)} =0. (3.29)

j=1

The relation (3.18) together with the equality constraint of the dual, yields

(a— 9){2 ¥i(V(g;(x)+ Wj))} +(ap + B [VPf (%) + V(V2f (x)p)]
=1
+(B+ap) [VA(7g(x)) + V(V?(72(x))p)]
1
+5(ap)" V(V2f ()p) = (ap) V(V*f (X))
0p\" 2 e 9o e
+ (7) V(V(yg(x))p) —apV(V(yg(x))p)=0.
Using (3.27) in this equation, we have,
(=00 35, v e )+ wj))}
=
T
- (g) (VYT F(Z)p) + V(V (7" g(x))p) = 0. (3.30)
If (a,0) = 0, then (3.27) implies § = 0 and u = 0 from (3.19) consequently we
get (a, 3,0, u) = 0 contradicting (3.26). Thus, (a, 6) # 0, this implies that at least

one of these multipliers a and 6 must be positive. We claim p = 0. Suppose that
p # 0, then (3.27) yields,

(a—80)p=0.

This implies @ = 6 > 0. So from (3.29) along with (3.27), we have

f’T{ZJ"j(V(gj(f)+Wj)+V2(5'Tg(fc))ﬁ)} =0. (3.31)

j=1
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T

m
Since V2 (Z ngj()‘c)) is positive definite, i.e., p! V2 ( }‘/jgj(fc)) p > 0 and
) >

=1
pr X (g, +

j=1

0, we have

pT{ 7i(V(g;(®) +w;)+ vz(fg(i))p)} > 0.
j=1

This is contradicted by (3.31). Hence p = 0. By this, (3.27) implies 8 = 0.
From (3.19), we have

= gj(fc)+ij5<=—&so, ji=1,2,...,m. (3.32)
From (3.24), we have

w;=8(x|D;), j=12,...,m.

Using this in (3.32), we obtain

=  g(x)+S8(x|D;)<0, j=1,2,...,m.

This implies is feasible for (NP).
Multiplying (3.32) by y; and adding over i we have

m

Zyj(g(2)+wjfc)=0- (3.33)

j=1
Now consider

R i S N 2Ts e

(f(x)+x Z)_Ep [VE(f(x))p] =f(x)+x"2 usingp=0.
From (3.23), we have

xTz=5(x|C).
Thus

1

(F(R) +52) = Sp" [V (RDP] = F(2) +5(x1C).
If for all feasible (x,z,y,u,w;,wy,...w,,p), f(-) + (-)Tz is second order
pseudoconvex and Z_)‘/j(gj(-) + (-)ij), is second order quasiconvex, by

j=1
Theorem 3.6, then X is an optimal solution of the problem (NP). O
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4. Special cases

Now for p = 0, the dual program (WD) and (MD), becomes the Wolfe and Mond
Weir type programs for (NP) studied by Husain et al. [7]

(WD)  Max (f(u)+zTu)+Zyj(gj(u)+iju)

j=1
subject to

(VW +2)+ D ¥(Vg;+w)=0
j=1

y =0,

zeC,w;€D;, j=12,...,m.

(MD)  Max (f(u)+z"u)

subject to

(V) +2)+ Y y(Vg;w)+w) =0
j=1
y =0,

ZEC,WJEDJ, j:1;2;---’m~
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