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Mixed Type Second Order Symmetric Duality
in Multiobjective Programming

I. Husain, A. Ahmed, and Mashoob Masoodi

Abstract. A pair of mixed type multiobjective second-order symmetric dual
program is formulated. Weak, strong and converse duality theorems are validated
under bonvexity-boncavity and pseudobonvexity-pseudoboncavity of the Kernel
function appearing in the primal and dual programs. Under additional conditions
on the Kernel functional constituting the objective and constraint functions,
these programs are shown to be self dual. This formulation of the programs not
only generalizes mixed type first order symmetric multiobjective duality results
but also unifies the pair of Wolfe and Mond-Weir type second order symmetric
multiobjective programs.

1. Introduction

Duality theory has played an important role in development of optimization
theory. Inception of duality theory in linear programming may be traced to
classical minmax theory of Von Neumann [16] and was first explicitly given by
Gale, Kuhn and Tucker [8] Duality results have proved to be useful in the growth
of numerical algorithms for solving certain classes of optimization problems. For
nonlinear programming problem, the existence of duality theory helps to develop
numerical algorithms, as it provides suitable stopping rule for primal and dual
problems. Applications of duality are prominent in physics, management science,
economics and engineering.

Following Dorn [7], first order symmetric and self duality results in
mathematical programming have been derived by a number of authors, notably,
Dantzig et al. [6], Mond [15], and Bazaraa and Goode [1]. In these aforecited
references, the authors have studied first order symmetric duality under the
assumptions of convexity-concavity of the kernel function involved. Mond and
Cottle [13] gave self duality by re-examining the programs of [15]. Later Mond
and Weir [14] presented different pair of symmetric dual nonlinear program
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with a view to relax convexity-concavity of kernel functions to pseudoconvexity-
pseudoconcavity.

Mangasarian [11] was the first to identify second order formulation the
nonlinear programs under the assumptions that are complicated and somewhat
difficult to verify. Mond [12] introduced the concept of second order convex
functions named as bonvex functions by Bector and Chandra [2] and establish
second order symmetric duality results under the assumptions of second order
convexity on functions involved in the primal program. In [12] Mond has
essentially remarked that the study of second order duality is important due to its
computational advantage over first order duality as it provided tighter bound for
the value of the objective function when approximations are used. Subsequently,
Bector and Chandra [3] presented a pair of Mond-Weir type [14] second order
symmetric and self dual programs in order to relax the bonvexity-boncavity
conditions on the kernel function, considered in Mond [15] to pseudoconvexity-
pseudoboncavity.

Chandra, Husain and Abha [5] presented a new symmetric dual formulation
(called mixed symmetric dual formulation) for a class of nonlinear programming
problem and derived various duality results. Their mixed formulation unifies the
Wolfe [18] and Mond Weir type [14] symmetric dual formulations respectively,
incorporated by Dantzig et al. [6] and Mond-Weir [14].

Recently Suneja et al. [17] studied Mond-Weir type second order symmetric
duality in multiobjective programming by establishing usual duality theorems
under η-bonvexity and η-boncavity assumptions. They also proved self duality
theorems under skew symmetry of the kernel function that occur in the formulation
of the problems. In [17] each component of the multiobjective dual models
involves different auxiliary variables pi and qi , i = 1, 2, . . . , k, disagreeing with
the formulation of second order dual model having single auxiliary variable p,
presented by Mangasarian [11].

The purpose of this research is to present multiobjective version of the second
order mixed symmetric and self duality in traditional mathematical programming
with a single objective treated by Husain and Abha [9]. This formulation of the
problems considers the same auxiliary variable p in the primal and the same
auxiliary variable q in the dual, which is the conformity with the Mangasarian’s
[11] formulation. Obviously, our formulation unifies Wolfe and Mond-Weir type
symmetric second order dual models which are not studied in the literature. In
addition to validation of various duality theorems under suitable second order
convexity/generalized second order convexity, an attempt is also made to identify
self duality for this pair of programs under additional restrictions on the kernel
functions involved.
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2. Pre-requisites and Definitions

Let Rn denoted the n-dimensional Euclidean space. The following ordering
relations in Rn are recalled for our use. If x , y ∈ Rn, then

x < y⇔ x i < yi , (i = 1, 2, . . . , n)

x µ y⇔ x i ≤ yi , (i = 1, 2, . . . , n)

x ≤ y⇔ x i ≤ yi , (i = 1, 2, . . . , n), but x 6= y

x 6≤ y is the negation of x ≤ y.

For x , y ∈ R, x ≤ y and x < y have the usual meaning.

Let φ(x , y) be twice differentiable real-valued function defined on Rn × Rn.
Let ∇xφ( x̄ , ȳ) and ∇yφ( x̄ , ȳ) denote the gradient vectors with respect to x and
y , respectively evaluated at ( x̄ , ȳ). Also let ∇2

xφ( x̄ , ȳ) and ∇2
yφ( x̄ , ȳ) debits the

Hessian matrix of second order partial derivatives of φ with respect to x and y ,
respectively evaluated at ( x̄ , ȳ). The symbols ∇x xφ( x̄ , ȳ) and ∇y yφ( x̄ , ȳ) are
similarly defined. The symbols ∇y(∇2

xφ( x̄ , ȳ)q) and ∇x(∇2
yφ( x̄ , ȳ)p) denote the

matrices whose (i, j)th elements are respectively given as ∂

∂ yi
(∇2

xφ( x̄ , ȳ)q) j , with

q ∈ Rn and ∂

∂ x i
(∇2

yφ( x̄ , ȳ)p) j with p ∈ Rm.

Definition 2.1. The function φ us said to be bonvex in first variable x at u ∈ Rm,
if for all v ∈ Rn, q ∈ Rn, x ∈ Rn and for fixed y ,

φ(x , v)−φ(u, v)

½ (x − u)T [∇xφ(u, v) +∇2
x(u, v)q]− 1

2
qT∇2

xφ(u, v)q .

and φ(x , y) is used to be boncave in the second variable y at v, if for all u ∈ Rm,
pi ∈ Rm, y ∈ Rm and for fixed x ∈ Rn,

φ(x , v)− f (x , y)

µ (v − y)T [∇yφ(x , y) +∇2
yφ(x , y)p]− 1

2
pT∇2

yφ(x , y)p .

Definition 2.2. The function φ is said to be pseudobonvex in the first variable x
at u ∈ Rn, if for all v ∈ Rn, qi ∈ Rn and x ∈ Rn and for fixed y ,

(x − u)T
�
∇xφ(u, v) +∇2

xφ(u, v)q
�
½ 0

⇒ φ(x , v)½ φ(u, v)− 1

2
qT∇2

xφ(u, v)q

and φ us said to be pseudoboncave in the second variable y at v ∈ Rn, if for all
u ∈ Rm, p ∈ Rm and y ∈ Rm and for fixed x ∈ Rn

(v − y)T [∇yφ(x , y) +∇2
yφ(x , y)p]µ 0

⇒ φ(x , v)µ φ(x , y)− 1

2
pT∇2

yφ(x , y)p .
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Definition 2.3. The function φ is said to be skew symmetric, when both x and
y ∈ Rn, and

φ(x , y) =−φ(y, x),

for all in the domain of φ.

Consider the following usual unconstrained multiobjective optimization
programs;

(VP) Minimize ψ(x) = (ψ1(x),ψ2(x), . . . ,ψk(x))

subject to x ∈ X = {x ∈ Rn |h(x)µ 0}
where ψ : Rn→ Rk and h : Rn→ Rm.

Definition 2.4. (a) A point x̄ ∈ X is said to be an efficient solution of (VP) if there
exists no other x ∈ X such that ψ(x)≤ψ( x̄).

(b) A point x̄ ∈ X is said to be properly efficient solution of (VP) if it is efficient
and if there exists a scalar M > 0 such that for each i ∈ {1, 2, . . . , k} and x ∈ X
satisfying ψ1(x)<ψ1( x̄)

ψ1( x̄)−ψ1(x)
ψ1(x)−ψ1( x̄)

≤ M ,

for some j such that ψ1(x)>ψ1( x̄).
(c) An efficient point x̄ ∈ X that is not properly efficient is said to be improperly

efficient. Then x̄ is improperly efficient means that every scale M > 0 (no
matter how large), then point x ∈ X and an i such that ψ1(x)<ψ1( x̄) and

ψ1( x̄)−ψ1(x)
ψ1(x)−ψ1( x̄)

> M ,

for all j satisfying ψ1(x)>ψ1( x̄).
(d) A point x̄ ∈ X is said to be weak minimum of (VP) if there does not exists any

feasible point x such that φ( x̄)> φ(x).

Any efficient solution of (VP) is obviously a weak minimum of (VP).

3. Mixed Type Second Order Multi-objective Duality

For N = {1, 2, . . . , n} and M = {1, 2, . . . , m}, let J1 ⊆ N and K1 ⊆ M and
J2 = N \ J1 and K2 = M \ K1. Let |J1| denote the number of elements in the subset
J1. The other symbols |J2|, |K1| and |K2| are defined similarly. Let x1 ∈ R|J1| and
x2 ∈ R|J2|, then any x ∈ R can be written as x = (x1, x2). Similarly for y1 ∈ R|K1|

and y2 ∈ R|K2|, can be written as y = (y1, y2). Let f : R|J1| × R|K1| → R and
g : R|J2| × R|K2| → R be twice differentiable functions. It is to be noticed here that
if J1 is an empty set, the J2 = N , |J1| = 0 and |J2| = n. Then R|J1| and R|J1| × R|K1|

will be the zero-dimensional and |K1|-dimensional vectors respectively. Similarly
we can describe the cases K1 an empty set, K2 an empty set and J2, as an empty
set.
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We now introduce the following pair of nonlinear programs and study its second
order symmetric duality by the following theorems:

Primal Problem:

(SMP): Minimize F(x1, x2, y1, y2, p, r)

= (F1(x
1, x2, y1, y2, p, r), . . . , Fk(x

1, x2, y1, y2, p, r))

subject to ∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p µ 0, (3.1)

∇y2(λT g)(x2, y2) +∇2
y2
(λT g)(x2, y2)r µ 0, (3.2)

(y2)T [∇y2(λT g)(x2, y2) +∇2
y2
(λT g)(x2, y2)r]½ 0, (3.3)

x1, x2 ½ 0, (3.4)

λ ∈ Λ+. (3.5)

Dual Problem:

(SMD): Maximize G(u1, u2, v1, v2, q, s)

= (G1(u
1, u2, v1, v2, q, s), . . . , Gk(u

1, u2, v1, v2, q, s))

subject to ∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q ½ 0, (3.6)

∇x2(λT g)(u2, v2) +∇2
x2(λT g)(u2, v2)s ½ 0, (3.7)

(u2)T [∇x2(λT g)(u2, v2) +∇2
x2(λT g)(u2, v2)s]µ 0, (3.8)

x1, x2 ½ 0, (3.9)

λ ∈ Λ+. (3.10)

where

(i) Fi(x1, x2, y1, y2, p, r) = fi(x1, y1)− 1

2
pT∇2

y1 fi(x1, y1)p

− (y1)T {∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p}

+ gi(x2, y2)− 1

2
rT∇2

y2 gi(x2, y2)r

(ii) Gi(u1, u2, v1, v2, q, s) = fi(u1, v1)− 1

2
qT∇2

x1 fi(u1, v1)q

− (u1)T {∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q}

+ gi(u2, v2)− 1

2
sT∇2

x2 g
1
(u2, v2)s

(iii) p ∈ R|K1|, r ∈ R|K2|, q ∈ R|J1|, s ∈ R|J2|, and λ = (λ1, . . . ,λk)T with λ1 ∈ R,
i = 1, 2, . . . , k.

(iv) Λ+ =

¨
λ ∈ Rk|λ > 0,

k∑
i=1
λ1

«
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Theorem 3.1 (Weak duality). For (x1, x2, y1, y2,λ, p, r) be feasible for (SMP) and
(u1, u2, v1, v2,λ, q, s) feasible for (SMD), let

(i) for each i ∈ {1, 2, . . . , k}; f1(·, y1) be bonvex at u1 for fixed y1 and fi(x1, ·) be
boncave at y1 for fixed x1, and

(ii) λT g(·, y2) be pseudoconvex at u2 for fixed y2, and λT g(x2, ·) be pseudoboncave
at y2 for fixed x2.

Then F(x1, x2, y1, y2, p, r)≤ G(u1, u2, v1, v2, q, s).

Proof. By the convexity-boncavity of fi , i ∈ {1, 2, . . . , k},

fi(x
1, v1)− fi(u

1, v1) ½ (x1 − u1)T [∇x1 fi(u
1, v1) +∇2

x1 fi(u
1, v1)q]

− 1

2
qT∇2

x1
fi(u

1, v1)q (3.11)

and

fi(x
1, v1)− fi(x

1, y1)T ½ (v1 − y1)[∇y1 fi(x
1, y1) +∇2

y1 fi(x
1, y1)p]

− 1

2
pT∇2

y1 fi(x
1, y1)p . (3.12)

Multiplying (3.12) by (−1) and adding resulting inequality to (3.11), we have

fi(x
1, y1)− 1

2
pT∇2

y1 fi(x
1, y1)p− (y1)T {∇y1(λT f )(x1, y1) +∇2

y1(λT f )(x1, y1)p}
�π

2
− θ
�
−
�

fi(u
1,v1)− 1

2
qT∇2

x1 fi(u
1,v1)q− (u1)T {∇x1 fi(u

1,v1) +∇2
x1 fi(u

1,v1)q}
�

½ (x1)T {∇1
x1 fi(u

1,v1) +∇2
x1 fi(u

1,v1)q} − (v1)T {∇y1 fi(x
1,y1) +∇2

y1 fi(x
1,y1)p}

Using (3.5) and (3.10), this inequality becomes,

k∑

i=1

λi

�
fi(x

1, y1)− 1

2
pT∇2

y1 fi(x
1, y1)p

−(y1)T {∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p}

�

−
k∑

i=1

λi

�
fi(u

1, v1)− 1

2
qT∇2

x1 fi(u
1, v1)q

−(u1)T {∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q}

�

½ (x1)T {∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q}

−(v1)T {∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p}.
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This, in view of (3.6) with (3.4), and (3.1) with (3.9), yields,

k∑

i=1

λi

�
fi(x

1, y1)− 1

2
pT∇2

y1 fi(x
1, y1)p

−(y1)T {∇y1(λT f )(x1, y1) +∇2
y1(λT f )i(x

1, y1)p}
�

½
k∑

i=1

λi

�
fi(u

1, v1)− 1

2
qT∇2

x1 fi(u
1, v1)q

−(u1)T {∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q}

�
. (3.13)

From (3.4), (3.7) and (3.8), we have

(x2 − u2)T [∇x2(λT g)(u2, v2) +∇2
x2(λT g)(u2, v2)s]½ 0.

Also from (3.9), (3.2) and (3.3), we have

(v2 − y2)T [∇y2(λT g)(x2, y2) +∇2
y2(λT g)(x2, y2)r]µ 0.

By pseudobonvexity of λT g(·, y2) at u2, we have

λT g(x2, v2)½
�
(λT g)(u2, v2)− 1

2
sT∇2

x2(λT g)(u2, v2)s
�

(3.14)

and by pseudoboncavity λTg(·, y2) at y2, we have,

λT g(x2, v2)µ λT g(x2, y2)− 1

2
rT∇2

y2(λT g)(x2, y2)r . (3.15)

From (3.14) and (3.15), we have

λT g(x2, y2)− 1

2
rT∇2

y2(λT g)(x2, y2)r

½ λT g(u2, v2)− 1

2
sT∇2

x2(λT g)(x2, v2)s (3.16)

Combing (3.13) and (3.16), we have

k∑

i=1

λi

�
fi(x

1, y1)− 1

2
pT∇2

y1 fi(x
1, y1)p

− (y1)T {∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p}

+ gi(x
2, y2)− 1

2
rT∇2

y2λ
T gi(x

2, y2)r
�

½
k∑

i=1

λi

�
fi(u

1, v1)− 1

2
qT∇2

x1 fi(u
1, v1)q
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− (u1)T {∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q}

+λT gi(u
2, v2)− 1

2
sT∇2

x2 gi(u
2, v2)s

�

or

k∑

i=1

λi Fi(x
1, x2, y1, y2, p, r)½

k∑

i=1

λiGi(u
1, u2, v1, v2, q, s)

or

λT F(x1, x2, y1, y2, p, r)½ λT G(u1, u2, v1, v2, q, s) .

This implies

F(x1, x2, y1, y2, p, r)� G(u1, u2, v1, v2, q, s). ¤

Theorem 3.2 (Strong duality). Let for each i ∈ {1, 2, . . . , k}, f i be thrice
differentiable on Rn × Rm. Let ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) be a properly efficient solution
of (SMP); fix λ= λ̄. Assume that

(A1): the set (∇2
y1 f1,∇2

y1 f2, . . . ,∇2
y1 fk) is linearly independent,

(A2): the set (∇2
y2 g1,∇2

y2 g2, . . . ,∇2
y2 gk) is linearly independent,

(A3): both the Hessian matrices ∇y1(∇2
y1(λ̄T f )p) and ∇y2(∇2

y2(λ̄T g)r), are either
positive or negative definite,

(A4): the set (∇y2 g1 + ∇2
y2 g1 r̄,∇y2 g2 + ∇2

y2 g2 r̄, . . . ,∇y2 gk + ∇2
y2 gk r̄) is linearly

independent and
(A5): the set {∇y1 f1 + ∇2

y1 f1 p̄,∇y1 f2 + ∇2
y1 f2 p̄, . . . ,∇y1 fk + ∇2

y1 fk p̄} is linearly
independent.

Where f1 = f1( x̄1, ȳ1), g1 = g1( x̄1, ȳ1), i = 1, 2, . . . , k.

Then ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄ = 0, s̄ = 0) is feasible for (SMD) and F( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄)
= G( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄).

Proof. Since ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) is a properly efficient solution of (SMP), it is
also a weak minimum. Hence there exist α ∈ Rk, with α = (α1,α2, . . . ,αk) and
µ ∈ Rk, β ∈ R|K1|, θ ∈ R|K2|, δ1 ∈ R|J1|, δ2 ∈ R|J2| and η ∈ R such that the following
Fritz John optimality condition [12] are satisfied at ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄)

∇x1(αT f ) + (β − (αT e) ȳ1)T∇y1 x1(λT f )

+
k∑

i=1

�
(β − (αT e) ȳ1)λ̄1 −

α1 p̄

2

�
∇x1(∇2

y1 f1 p̄) = δ1 , (3.17)

∇x2(αT g) + (θ −η ȳ2)∇y2 x2(λT g)

+
k∑

i=1

�
(θ −η ȳ)λ̄1 −

α1 r̄

2

�
∇x2(∇2

y2 g1 r̄) = δ2 , (3.18)
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∇y1(α− (αT e)λ̄)T f +
�
β − (αT e) ȳ1 − (αT e)p̄

�
∇2

y1(λ̄T f )

+
k∑

i=1

�
(β − (αT e) ȳ1)λ̄1 −

α1 p̄

2

�
∇y1(∇2

y1 f1 p̄) = 0 , (3.19)

∇y2(α−ηλ̄)T g + (θ −η ȳ2 −ηr̄)T∇2
y2(λ̄T g)

+

¨
(θ −η ȳ2)λ̄1 −

αT r̄

2

«
∇y2(∇2

y2 g r̄) = 0 , (3.20)

k∑

i=1

((β − (αT e) ȳ1)λ̄1 −α1 p̄)∇2
y1 f1 = 0 , (3.21)

k∑

i=1

((θ −η ȳ2)λ̄
1
−α1 r̄)∇2

y2 g1 = 0 , (3.22)

(β − (αT e) ȳ1)T [∇y1 f1 +∇2
y1 f p̄] + (θ −η ȳ2)T [∇y2 g +∇2

y2 g r̄] +µ= 0 , (3.23)

β[∇y1(λ̄T f1) +∇2
y1(λ̄T f )p̄] = 0 , (3.24)

θ T [∇y2(λ̄T g) +∇2
y2(λ̄T g)r̄] = 0 , (3.25)

η( ȳ2)T [∇y2(λ̄T g) +∇2
y2(λ̄T g)r̄] = 0 , (3.26)

δ1 x̄1 = 0 , (3.27)

δ2 x̄2 = 0 , (3.28)

µT λ̄= 0 , (3.29)

(α,β ,θ ,η,δ1,δ2,µ)≥ 0 , (3.30)

(α,β ,θ ,η,δ1,δ2, λ̄,µ) 6= 0 . (3.31)

Since λ̄ > 0, from (3.29), we have

µ= 0 . (3.32)

From (3.21) along with the assumption (A1) and (3.22) along with the
assumption (A2), we obtain

(β − (αT e) ȳ1)λ̄1 = α1 p̄, i = 1, 2, . . . , k (3.33)

and

(θ −η ȳ2)λ̄1 = α1 r̄, i = 1, 2, . . . , k. (3.34)

Multiplying (3.23) by λ̄ and using (3.29), we get

(β − (αT e) ȳ1)T (∇y1(λ̄T f ) +∇2
y1(λ̄T f )p̄)

+(θ T −η ȳ2)[∇y2(λ̄T g) +∇2
y2(λ̄T g)r̄] = 0 . (3.35)
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From (3.25) and (3.26), we have

(θ T −η ȳ2)[∇y2(λ̄T g) +∇2
y2(λ̄T g)r̄] = 0 (3.36)

i.e.,

(θ T −η ȳ2)[∇y2(ηλ̄)T g +∇2
y2(ηλ̄)T g r̄] = 0 . (3.37)

Using (3.36) i.e. in (3.35), we have

(β − (αT e) ȳ1)T (∇y1(λ̄T f ) +∇y1(λ̄T f )p̄) = 0 (3.38)

i.e.,

(β − (αT e) ȳ1)T (∇y1((αT e)λ̄T f ) +∇2
y1((αT e)λ̄T f ) = 0 . (3.39)

Using (3.33) in (3.19) and (3.34) in (3.20), we obtain

(α− (αT e)λ̄)T (∇y1 f +∇2
y1 f p̄) +

1

2
(β − (αT e) ȳ1)T∇y1(∇2

y1(λ̄ f )p̄) = 0 , (3.40)

(α−ηT λ̄)T (∇y2 g +∇2
y2 g r̄) +

1

2
(θ −η ȳ2)∇y2(∇2

y2(λ̄g)r̄) = 0 . (3.41)

On multiplying (3.40) by (β−(αT e)−1 y) and (3.41) by (θ−ηλ̄)T and then adding,
we obtain

(β − (αT e) ȳ1){∇y1(α− (αT e)λ̄)T f +∇2
y1((α− (αT e)λ̄)T f p̄}

(θ −ηT ȳ2)T {∇y2(α−ηT λ̄)g + (∇2
y2(α−ηT λ̄)g r̄}

+
1

2
(β − (αT e) ȳ1)T∇y1(∇2

y1(λ̄T f )p̄) + (β − (αT e) ȳ1)

+
1

2
(θ −η ȳ2)T∇y2(∇2

y2(λ̄T g)r̄) + (θ −η ȳ2) = 0 . (3.42)

Using (3.32) and then multiply (3.23) by α, we have

(β − (αT e) ȳ1){∇y1(α− (αT e)λ̄)T f +∇2
y1((α− (αT e)λ̄)T f p̄}

+(θ −η ȳ2)T {∇y2(αT g) +∇2
y2(αT g)r̄}= 0 .

Summing (3.37) and (3.39) from this inequality we have

(β − (αT e) ȳ1){∇y1(α− (αT e)λ̄)T f +∇2
y1((α− (αT e)λ̄)T f p̄}

+(θ −ηT ȳ2)T {∇y2(α−ηT λ̄)g + (∇2
y2(α−ηT λ̄)g r̄}= 0 . (3.43)

Using (3.43) in (3.42), we have

(β − (αT e) ȳ1)∇y1(∇2
y1(λ̄T f )p̄)T (β − (αT e) ȳ1)

+(θ −η ȳ2)T∇y2(∇2
y2(λ̄T g)r̄)T (θ −η ȳ2) = 0 . (3.44)
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But by the assumption (A3), we have

(β − (αT e) ȳ1)T∇y1(∇2
y1(λ̄ f )p̄)(β − (αT e) ȳ1) = 0

and

(θ −η ȳ2)T∇y2(∇2
y2(λ̄T g)r̄)T (θ −η ȳ2) = 0

which respectively gives

β − (αT e) ȳ1 = 0 (3.45)

and

θ −η ȳ2 = 0 . (3.46)

From (3.40) together with (3.45), we have

(α− (αT e)λ̄1)T (∇y1 f +∇2
y1 f p̄) = 0

which because (A5) gives

α− (αT e)λ̄1 = 0 . (3.47)

The relation (3.41) together with (3.46) gives

(α−ηλ̄1)T {∇y2 g +∇2
y2 g r̄}= 0

which because of (A4) implies

α−ηλ̄= 0 . (3.48)

If possible, let η = 0. Then from (3.48), we have α = 0 and from (3.45) and
(3.46) we have θ = 0 = β . From (3.17) and (3.18), we get δ1 = 0 and δ2 = 0.
Contradicting (3.31).

Hence η > 0. From (3.48) we have α > 0. From (3.45) and (3.46) we obtain

ȳ1 ½ 0, ȳ2 ½ 0. (3.49)

From (3.17) along with (3.33) and (3.47), we get

∇x1(λ̄T f ) = δ1.

This along with (3.30) and (3.27), we obtain

∇x1(λ̄T f )≥ 0 (3.50)

and

( x̄1)T∇x1(λ̄T f ) = 0. (3.51)
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From (3.18) along with (3.34) and (3.47), yields

∇x2(λ̄T g) = δ2.

This along with (3.30) and (3.28) yields

∇x2(λ̄T g)≥ 0 (3.52)

and

( x̄2)T∇x2(λ̄T g) = 0. (3.53)

From (3.33) along with (3.45) and α1 > 0, and from (3.34) along with (3.46)
α1 > 0, respectively, we have

p̄ = 0= r̄.

From (3.49), (3.50), (3.52) and (3.53), it implies that ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q = 0,
s = 0) is feasible for (SMD).

From (3.24) along with (3.45) and α > 0 and (3.26) with η > 0, we have
respectively,

( ȳ1)T (∇y1(λ̄T f ) +∇2
y1(λ̄T f )p̄) = 0 (3.54)

and

( ȳ2)T (∇y2(λ̄T g) +∇2
y2(λ̄T g)r̄) = 0 . (3.55)

Consider

Fi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = fi( x̄

1, ȳ1)− 1

2
p̄∇2

y1 fi( x̄
1, ȳ1)p̄

− ( ȳ1)T {∇y1(λ̄ f )T ( x̄1, ȳ1) +∇2
y1(λ̄ f )T ( x̄1, ȳ1)p̄}

+ gi( x̄
2, ȳ2)− 1

2
r̄T

i ∇2
y2 gi( x̄

2, ȳ2)r̄ .

This, along with (3.54) and p̄ = 0= r̄, becomes

Fi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = fi( x̄

1, ȳ1) + gi( x̄
2, ȳ2), i = 1, 2, . . . , k. (3.56)

Again consider,

Gi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) = fi( x̄

1, ȳ1)− 1

2
q̄∇2

x1 fi( x̄
1, ȳ1)q̄

− ( x̄1)T {∇x1(λ̄ f )T ( x̄1, ȳ1) +∇2
x1(λ̄ f )T ( x̄1, ȳ1)q̄}

+ gi( x̄
2, ȳ2)− 1

2
s̄T∇2

x2 gi( x̄
2, ȳ2)s̄ .
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This along with (3.51) and q̄ = s̄ = 0, becomes

Gi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) = fi( x̄

1, ȳ1) + gi( x̄
2, ȳ2), i = 1, 2, . . . , k (3.57)

From (3.56) and (3.57), we have

Fi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = Gi( x̄

1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄), for all i ∈ {1, 2, . . . , k}.

This implies

Fi( x̄
1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = Gi( x̄

1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄). (3.58)

That is, the objective values of (SMP) and (SMD) are equal.

If ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) is not efficient, then there exists (ū1, ū2, v̄1, v̄2, λ̄, q̄, s̄)
such that

G(ū1, ū2, v̄1, v̄2, λ̄, q̄, s̄)≥ G( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄)

which because of (3.58) gives

G(ū1, ū2, v̄1, v̄2, λ̄, q̄, s̄)≥ F( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄).

This contradicts the weak duality (Theorem 3.1).

If ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) were improperly efficient, then for some feasible
(ū1, ū2, v̄1, v̄2, λ̄, q̄, s̄) and some i

Gi(ū
1, ū2, v̄1, v̄2, λ̄, q̄, s̄)− Fi( x̄

1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄)> M

and so is

λ̄T Gi(ū
1, ū2, v̄1, v̄2, λ̄, q̄, s̄)> λ̄T F( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄).

This again contradicts Theorem 3.1. Hence ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) is, indeed, a
properly efficient solution of (SMD).

Theorem 3.3 (Converse duality). Let for each i ∈ {1, 2, . . . , k}, fi be thrice
differentiable on Rn × Rm. Let ( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄) be a properly efficient solution
of (SMD); fix λ= λ̄ Assume that

(C1): the set ∇2
x1 f1,∇2

x1 f2, . . . ,∇2
x1 fk is linearly independent,

(C2): the set ∇2
x2 g1,∇2

x2 g2, . . . ,∇2
x2 gk is linearly independent,

(C3): both the Hessian matrices ∇x1(∇2
x1(λT f )q̄) and ∇x2(∇2

x2(λT g)r̄) are either
positive or negative definite,

(C4): the set {∇x1 f1 + ∇2
x1 f1q̄,∇x1 f2 + ∇2

x1 f2q̄, . . . ,∇x1 fk + ∇2
x1 fkq̄} is linearly

independent; and
(C5): the set {∇x2 g1 + ∇2

x2 g1s̄,∇x2 g2 + ∇2
x2 g2s̄, . . . ,∇x2 gk + ∇2

x2 gk s̄} is linearly
independent.
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where fi = fi( x̄1, ȳ1), gi = gi( x̄1, ȳ1), i = 1, 2, . . . , k. Then ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄ = 0,
r̄ = 0) is feasible for (SMP) and F( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = G( x̄1, x̄2, ȳ1, ȳ2, λ̄, q̄, s̄).

Moreover, if the hypothesis of Theorem 3.1 are satisfied for all feasible solutions
of (SMP) and (SMD), then ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) is a properly efficient solution of
(SMP).

4. Mixed Type Second Order Multiobjective Self Duality

In this section, we now prove the following self-duality theorem. A mathe-
matical program is said to be self-dual, if it is formally identical with its dual,
that is, if the dual is recast in the form of the primal, the new program so obtained
is the same as the primal. In general the program (SMP) and (SMD) are not self
dual without an added restriction on fi(x , y) and fi(y, x), i ∈ {1, 2, . . . , k}. The
functions fi : R|J1| × R|J2| → R and gi : R|J1| × R|J2| → R, i ∈ {1, 2, . . . , k} is the skew
symmetric if for all x , y ∈ Rn,

fi(x
1, y1) =− fi(y

1, x1), i ∈ {1, 2, . . . , k} and gi(x
2, y2) = gi(y

2, x2).

We describe the programs (SMP) and (SMD) as dual program if the conclusion
of Theorem 3.2 hold.

Theorem 4.1 (Self duality). If the kernel function fi( x̄1, ȳ1) and gi( x̄1, ȳ2) for
i ∈ {1, 2, . . . , k} are skew symmetric, then (SMP) is self-dual. If also (SMP) and
(SMD) are dual program, and ( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) is a joint optimal solution, then
so is ( ȳ1, ȳ2, x̄1, x̄2, λ̄, p̄, r̄) and F( x̄1, x̄2, ȳ1, ȳ2, λ̄, p̄, r̄) = 0.

Proof. Consider (SMP) and note that (SMD) can be written:

Minimize − G(x1, x2, y1, y2, q, s)

= (−Gi(x
1, x2, y1, y2, q, s), . . . ,−Gk(x

1, x2, y1, y2, q, s))

subject to − (∇x1(λT f )(x1, y1) +∇x1(λT f )(x1, y1)q)µ 0,

−(∇x2(λT g)(x2, y2) +∇2
x2(λT g)(x2, y2)s)µ 0,

−(x2)T (∇x2(λT g)(x2, y2) +∇2
x2(λT g)(x2, y2)s)½ 0,

y1, y2 ½ 0 ,
∗λ ∈ Λ+ ,

where

Gi(x
1, x2, y1, y2,λ, q, s) = fi(x

1, y1)− 1

2
qT∇2

x1 fi(x
1, y1)q

− (x1)T (∇x1(λT f )(x1, y1) +∇2
x1(λT f )(x1, y1)q)

+ gi(x
2, y2)− 1

2
sT∇2

x2 gi(x
2, y2)s .
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Since for each i ∈ {1, 2, . . . , k}, fi and gi are skew symmetric,

∇x1 fi(x
1, y1) =−∇y1 fi(y

1, x1),∇x2 gi(x
2, y2) =−∇y2 fi(y

2, x2),

∇x2(λT g)(x2, y2) =−∇y2(λT g)(y2, x2),∇2
x2(λT g)(x2, y2) =−∇2

y2(λT g)(y2, x2),

∇2
x1(λT f )(x1, y1) =−∇2

y1(λT f )(y1, x1),∇x1(λT f )(x1, y1) =−∇y1(λT f )(y1, x1),

and program (SMD) becomes.

Minimize G(y1, y2, x1, x2, q, s)

= (G1(y
1, y2, x1, x2, q, s), . . . , Gk(y

1, y2, x1, x2, q, s))

subject to (∇y1(λT f )(y1, x1) +∇2
y1(λT f )(y1, x1)q)µ 0,

−(∇y2(λT g)(y2, x2) +∇2
y2(λT g)(y2, x2)s)µ 0,

(x2)T (∇y2(λT g)(y2, x2) +∇2
y2(λT g)(y2, x2)s)½ 0,

y1, y2 ½ 0 ,

λ ∈ Λ+ ,

where

Gi(y
1, y2, x1, x2,λ, q, s) = fi(y

1, x1) +
1

2
qT∇2

y1 fi(y
1, x1)q

− (x1)T {∇y1(λT f )T (y1, x1) +∇2
y1(λT f )(y1, x1)q}

+ gi(y
2, x2)− 1

2
sT∇2

x2 gi(y
2, x2)s, i = 1, 2, . . . , k .

This is just (SMP).

The remainder of the proof follows on the line of [3] and [4]. ¤

5. Special Cases

If k = 1, λ = 1, fi = f and gi = g, the second order symmetric multiobjective
dual programs (SMP) and (SMD) to the following program, studied by Husain and
Abha [9]:

Primal Program:

(SP) : Minimize F(x1, y1, y1, y2, p, r) = f (x1, y1)− 1

2
pT∇2

y1 f ( x̄1, ȳ1)p

+(y1)T {∇y1 f (x1, y1) +∇2
y1 f (x1, y1)p}

+ g(x2, y2)− 1

2
rT∇2

y2 g(x2, y2)r

subject to ∇y1 f (x1, y1) +∇2
y1 f (x1, y1)p µ 0,

∇y2 g(x2, y2) +∇2
y2 g(x2, y2)r µ 0
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(y2)T {∇y2 g(x2, y2) +∇2
y2 g(x2, y2)r ½ 0

x1, x2 ½ 0.

Dual Program:

(SD) : Maximize G(u1, u2, v1, v2, q, s) = f (u1, v1)− 1

2
qT∇2

x1 f (u1, v1)q

+(u1)T {∇x1 f (u1, v1) +∇2
x1 f (u1, v1)q}

+ g(u2, v2)− 1

2
sT∇2

y2 g(u2, v2)s

subject to ∇x1 f (u1, v1) +∇2
x1 f (u1, v1)q ½ 0,

∇x2 g(u2, v2) +∇2
x2 g(u2, v2)s ½ 0,

(u2)T {∇x2 g(u2, v2) +∇2
x2 g(u2, v2)s}µ 0,

v1, v2 ½ 0.

If J2 = φ and K2 = φ, the programs (SMP) and (SMD) reduce to the following pair
of Wolfe type second order multiobjective dual programs which are not explicitly
studied in the literature

Primal Program:

(SWP) : Minimize F1(x1, y1, p) = (F1
1 (x

1, y1, p), . . . , F1
k (x

1, y1, p))

subject to ∇y1(λT f )(x1, y1) +∇2
y1(λT f )(x1, y1)p µ 0,

x1 ≥ 0,

λ ∈ Λ+ .

Dual Program:

(SWD) : Minimize G1(u1, v1, q) = (G1
1(u

1, v1, q), . . . , G1
k(u

1, v1, q))

subject to ∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q ½ 0,

y1 ≥ 0,

λ ∈ Λ+,

where, for each i ∈ {1, 2, . . . , k},
(i) F1

i (x
1, y1, p) = fi(x1, y2)− (y T )[∇y1(λT f )(x1, y1) +∇2

y1(λT f )(x1, y1)p]

− 1

2
pT∇2

y1 fi(x1, y1)p,

(ii) G1
i (u

1, v1, q) = fi(u1, v1)− (uT )[∇x1(λT f )(u1, v1) +∇2
x1(λT f )(u1, v1)q]

− 1

2
qT∇2

y1 fi(u1, v1)q.
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If J1 6= φ and K1 = φ, the programs (SMP) and (SMD) become the Mond-Weir
second order multiobjective dual program which are reported in mathematical
programming.

Primal Program:

(SMWP) : Minimize F2(x2, y2, r) = (F2
1 (x

2, y2, r), . . . , F2
k (x

2, y2, r))

subject to ∇y2(λT g)(x2, y2) +∇2
y2
(λT g)(x2, y2)r µ 0 ,

(y
2
)T [∇y2(λT g)(x2, y2) +∇2

y2
(λT g)(x2, y2)r]½ 0 ,

x2 ½ 0 ,

λ > 0 .

Dual Program:

(SMWD) : Maximize G2(u2, v2, s) = (G2
1(u

2, v2, s), . . . , G2
k(u

2, v2, s)) ,

subject to ∇x2(λT g)(u2, v2) +∇2
x2(λT g)(u2, v2)s ½ 0 ,

(u2)T [∇x2(λT g)(u2, v2) +∇2
x2(λT g)(u2, v2)s]µ 0 ,

v2 ½ 0 ,

λ > 0 .

where, for each i ∈ {1, 2, . . . , k},

(i) Fi(x2, y2, r) = gi(x2, y2)− 1

2
rT∇2

y2 gi(x2, y2)r,

(ii) Gi(u2, v2, s) = gi(u2, v2)− 1

2
sT∇2

x2 gi(u2, v2)s.

If p = q = s = r = 0, then the programs (SMP) and (SMD) reduce to the mixed
type first-order symmetric multiobjective programs studied by Bector, Chandra and
Abha [4].
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