
Journal of Informatics and Mathematical Sciences
Volume 5 (2013), Number 2, pp. 77–100

RGN Publications
http://www.rgnpublications.com

Algorithms for Constrained Best-fit Alignment

Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Abstract Manufacturing complex structures as planes requires the assembly of

several pieces. The first step in the process is to align the pieces. This article is

concerned with some mathematical and computational aspects of new algorithms

devoted to the alignment of the pieces. We describe the properties of suitable

algorithms to handle a non standard constrained optimization problem that

occurs in the assembly process of a manufactured product. Then we present

two kinds of algorithms: the first based on a fractional step algorithm and the

second on a local search algorithm. We assess them on real cases and compare

their results with an evolutionary algorithm for difficult non-linear or non-convex

optimization problems in continuous domain.

1. Introduction

1.1. Setting the problem

Manufacturing complex structures as planes requires the assembly of several

pieces. The first step in the process is to align the pieces. The assembly process

should respect some functional geometric requirements. Actually, it is impossible

to product pieces that allow a hole-to-hole (or precise) assembly. Real workpieces

are rigid systems that come along with tolerances with respect to perfect nominal

pieces. In the last decade, a new assembly process has been introduced in

aeronautics: the Best-Fit process that can be described as follows. First, take some

measurements, with some tracking lasers, on the pieces to be assembled. Then

compute with a suitable software the displacement of the pieces that align the

pieces accordingly to the tolerances. Then perform the assembly.

This article is concerned with some mathematical and computational aspects of

new algorithms devoted to the alignment of the pieces. This work was initiated

2010 Mathematics Subject Classification. 65K05, 90C55, 90C15, 90C26.

Key words and phrases. Non convex constrained optimization problems; Steepest descent with

projection algorithm and stochastic local search algorithm.

This work was supported by the HTSC program Tolérants of the Contrat de plan État-Région Picardie.

Copyright © 2013 Serge Dumont et al. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

78 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

to answer a request from the European Aeronautic Defence and Space Company

(EADS-IW). Other applications to real industrial problems of the algorithm will be

developed elsewhere.

1.2. Outline of the article

In a second section we describe the mathematical framework of the problem

to handle. The tolerances provide us with constraints. Therefore we are given a

constrained optimization problem. We then translate these optimization problem

into mathematical language by introducing some cost or fitness functional that may

differ according to the target we want to reach. Section 3 is devoted to introduce

a fractional step algorithm to solve the optimization problem. This provide us with

an efficient method to compute a solution. The difficulty is that our algorithm is

a deterministic algorithm that applies to a non convex functional; therefore some

improvements are required to avoid to be trapped in the neighborhood of a local

minimizer. Therefore in section 4 we introduce a greedy stochastic algorithm,

based on the previous one, to improve the results of the previous section. In

section 5 we present CMA-ES ([8]) that is an evolutionary algorithm for difficult

non-linear or non-convex optimization problems in continuous domain. Finally in

section 6 we discuss the efficiency of these algorithms on both academic and real

benchmarks. A last section contains some conclusions and perspectives.

2. The Problem

2.1. Mathematical modeling

Consider two rigid bodies V ,T in R
3. On each body is given (or measured) a

set of points denoted respectively {v j}1≤ j≤n, {t j}1≤ j≤n. Here we are dealing with

a 3D problem; it is worth to point out that if some symmetries are valid, one can

assume that the sets are included in a plane or in a line, and that some other

specific algorithms for 1D or 2D problems can be used. This will not be developed

here (we refer to [13] and to the references therein).

A hole-to-hole (or perfect) assembly requires to compute a displacement D
such that Dv j = t j for all j. In fact, some tolerances are allowed to relax these

constraints. These tolerances are constraints that are expressed as follow. For each

j, let be given a convex closed subset Ω̄ j whose interior Ω j is non empty (without

loss of generality we may assume that 0 belongs to this interior). The tolerance

will be satisfied if we are able to find out a displacement D such that

Dv j − t j ∈ Ω̄ j , for each j. (2.1)

The ultimate goal of the assembly process is to find out a displacement such that

the above assertions hold true for any j. For real life problems in aeronautics,

it can occur that such a solution does not exist, or that one cannot compute

straightforwardly the displacement that allow the hole-to-hole assembly. Hence

Algorithms for Constrained Best-fit Alignment 79

we introduce a fitness function as the derogation number N(D), that is the number

of j such that (2.1) is not valid, i.e.

N(D) = #{ j; Dv j − t j 6∈ Ω̄ j}. (2.2)

This derogation number is really a cost function because any non zero derogation

number implies a fee that is a loss of money for the plane manufacturers.

Let now go back to the mathematical modeling. A displacement D acting on R
3

is an affine isometry of R3. Let us recall that such a displacement is defined from

a matrix M that belongs to the orthogonal group O(3) and a translation τ through

the following product: for any z in R
3

Dz = Mz− τ. (2.3)

We now define the energy functional as

E(D) =
1

2

n
∑

j=1

|Dv j − p j(Dv j)|
2, (2.4)

where p j denotes the projector onto the closed convex set t j + Ω̄ j and | · | is the

Euclidean norm on R
3; let us recall the very definition of this projector: for any

z ∈ R
3, |z − p j(z)| = min

v∈t j+Ω̄ j

|z − v| (other choices for the projection are discussed

in [?]). Any displacement such that E(D) = 0 avoid positive derogation number,

and is then a solution to the original problem.

Let us observe that we have substituted to a discrete fitness function (2.2) an

energy functional E(D) that is defined on a continuous space, namely the set of

affine isometries. The idea is then to process to minimize this energy functional

E(D). We introduce in the sequel a efficient algorithm to achieve this goal. In the

next section, we will go further using this algorithm combined with some greedy

stochastic procedure to minimize the fitness functional N(D).

3. An Energy Decreasing Algorithm

The following difficulties occur about the optimization problem. On the one

hand, the optimization problem is non convex since the set of affine isometries is

non convex. Therefore classical algorithms do not apply straightforwardly. On the

other hand, we do not know if either a solution does exist or conversely if there is

uniqueness of such solution.

We introduce in the sequel a fractional step algorithm (or splitting algorithm)

inspired by the algorithm that decreases the energy of a liquid crystal (see [1]).

Let us remind that this algorithm was introduced to minimize a classical energy as
∫

Ω
|∇u|2 among smooth function u that satisfy |u| = 1 a.e. This last constraint is not

convex. Then the fractional step algorithm reads as follows. Set u0 for the initial

guess. At each stage uk for k integer preform two steps. Relax the constraint |u|= 1

and decrease the energy by a gradient method. Set uk+ 1

2 for the point that achieves

this descent. Then project uk+ 1

2 into the set of functions satisfying the constraint.

80 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Set uk+1 for the projection. Then go to the next stage. This algorithm converges

due to the fact that the projection process decrease also the energy (see [1]).

Let us introduce now our algorithm.

• Initialize the algorithm by D0 = I , the identity matrix for instance. At each

stage k, Dk being provided, perform the following two steps

• First step: consider the projection p j(Dk v j) of the points v j onto the closed

convex set t j + Ω̄ j .

• Second step: compute Dk+1 that minimizes

J(D) =
1

2

n
∑

j=1

|Dv j − p j(Dk v j)|
2. (3.1)

• Then go to the next stage.

The first step can be understood as follows: let us pretend that the body V is not

rigid anymore. By the projection method, we find a displacement of this body that

is not an isometry but that fits with the tolerances. This step is therefore called

the constrained step. In the second step, we seek an isometry that is close (in

the least-square sense) to the previous displacement. We call this step the rigid
one. Throughout this article we shall refer to this as the Constrained/Rigid (CR)

Algorithm.

3.1. Statement of the main mathematical result

We now state

Theorem 3.1. The CR algorithm is well defined and provides us with a sequence Dk

that decreases the energy. If moreover the matrix H0 whose entries are
n
∑

j=1

(v j)l(t j)m,

1 ≤ l, m ≤ 3 is invertible and if the domains Ω j are small enough, then the sequence
Dk converges towards a limit D∞.

Proof. To begin with, up to a translation, we may assume that

n
∑

j=1

v j = 0. (3.2)

First step: An energy decreasing algorithm.

We now prove that there is one solution D that achieves the minimum of the

functional (3.1) (we give in the sequel a process to compute it efficiently). For the

sake of simplicity, set c j = p j(Dk v j). We seek D as M ,τ that are respectively an

element of O(3) and a translation. Then, the functional (3.1) reads, denoting the

scalar product on R
3 by (·, ·),

J(D) = J(M ,τ) =
1

2

n
∑

j=1

|M v j |
2 −

n
∑

j=1

(M v j ,τ+ c j) +
1

2

n
∑

j=1

|τ+ c j |
2

Algorithms for Constrained Best-fit Alignment 81

=
1

2

n
∑

j=1

|v j |
2 −

n
∑

j=1

(M v j , c j) +
1

2

n
∑

j=1

|τ+ c j |
2, (3.3)

since M is an isometry and since
n
∑

j=1

v j = 0. At this stage, the minimization problem

splits into two minimization problems respectively in τ and in M . The first one

admits as a solution

τ= −
1

n

n
∑

j=1

c j =−
1

n

n
∑

j=1

p j(Mkv j − τk). (3.4)

The second one reads: Find M in O(3) that maximizes

G(M) =
n
∑

j=1

(M v j , c j) = Tr(H∗M), (3.5)

where Hl,m =
n
∑

j=1

(v j)l(c j)m, for 1≤ j, l ≤ 3. We use the following statement

Lemma 3.2 (Polar decomposition of a matrix). For any matrix H there exists a
pair (U ,S) that belongs to O(3)×S3, where S3 is the set of symmetric matrices with
non negative eigenvalues such that H = US.

At this stage, we seek an isometry N that maximizes Tr(SN), with UN = M .

Computing in a basis where S is a diagonal matrix, we thus obtain

Tr(SN) =
3
∑

l=1

λl Nl l , (3.6)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of S. We easily observe that this sum is

maximal for N = I and thus U = M .

At this stage we know that the algorithm is well defined, then we argue about its

convergence properties. On the one hand, by the very definition of Dk+1,

1

2

n
∑

j=1

|Dk+1v j − p j(Dk v j)|
2 ≤

1

2

n
∑

j=1

|Dk v j − p j(Dk v j)|
2 = E(Dk). (3.7)

On the other hand, due to the projection property

|Dk+1 v j − p j(Dk+1v j)|
2 ≤ |Dk+1v j − p j(Dk v j)|

2. (3.8)

Therefore E(Dk+1) ≤ E(Dk). Let us observe that if the equality E(Dk+1) = E(Dk)

is valid, then going back to the algorithm, it is straightforward to check that the

sequence Dl is stationary for l ≥ k+ 1.

Observe that the sequence τk is trapped into the compact convex set K = 1

n

n
∑

j=1

Ω̄ j .

Then we have a sequence Dk = (Mk,τk) that belongs to the compact set O(3)× K .

There exists then a subsequence Dk′ that converges to D∞. To prove that the whole

sequence is convergent we need a technical assumption.

82 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Second step: using the technical assumption.

Assume that H0 is invertible. By a continuity argument for any sequence c j that

belong to t j +Ω j satisfy that the matrix H whose entries are
n
∑

j=1

(v j)l(c j)m is also

invertible; then this remains true for the particular choice c j = p j(Dk v j) throughout

the algorithm process. As long as H is invertible, the map f : Dk 7→ Dk+1 is

continuous, since in the polar decomposition of a matrix the map H 7→ (U ,S)
is continuous.

Therefore if Dk′ 7→ D∞, then Dk′+1 7→ f (D∞). We are going to prove that

f (D∞) = D∞ that will lead to the convergence of the whole sequence. We have

E(D∞) = lim E(D(k+1)′) ≤ E(f (D∞))

= lim E(Dk′+1)≤ E(D∞)

= lim E(Dk′). (3.9)

Therefore E(D∞) = E(f (D∞)) and D∞ is a fixed point of f . �

3.2. Miscellaneous remarks and comments

3.2.1. About the technical assumption. There is one ambiguity in the proof of the

convergence of the algorithm. Imagine that there exists a stage with the matrix

H that is not invertible. Then in the polar decomposition the matrix U is not

unique (anyway, any choice of U will do the job). For real life applications in

aeronautics, this cannot occur. In fact the measured points (t j, v j) are close to the

perfect nominal points (T j, Vj) given by the Computer Aid Design. These perfect

points satisfy that there exists an exact displacement D such that DVj = T j . The

corresponding perfect matrix HCAD whose entries are
n
∑

j=1

(Vj)l(T j)m is invertible;

actually if x ∈ R
3 is in the kernel of HCAD, then for any vector y ∈ R

3,
n
∑

j=1

(Vj, y)(T j , x) = 0. Choosing y = D∗x leads to (T j, x) = 0 for all j and then

x = 0 if we have enough points T j to span R
3 (n is a large number in applications).

Then by a continuity argument H0 is also invertible.

3.2.2. The CR algorithm applied to pure translations displacements. We give

a convergence result that is valid in a particular case. Assume for the sake of

simplicity that the Ω js are balls and that we seek a solution that is a translation,

i.e. with M = 0. This strategy can be advocated as follows: the main part of the

displacement is given by the translations, the rotation allowing some adjustment

on the alignment. We now state

Proposition 3.3. Minimizing

E(τ) =
1

2

n
∑

j=1

|v j −τ− t j − p j(v j −τ− t j)|
2,

Algorithms for Constrained Best-fit Alignment 83

on the set of translations amounts to minimize a convex functional.

Proof. Set z j = v j− t j . Set E j(τ) = |z j−τ− p j(z j−τ)|
2. Assume that Ω j is the ball

centered at 0 and of radius δ j. Then ∇E j(τ) =
��

1−
δ j

|z j−τ|

�

+

�2

|z j − τ|
2, where

x+ =max(x , 0). Therefore one can prove that

E j(σ)− E j(τ)− (∇E j(τ),σ− τ)≥ 0. (3.10)

Hence E is convex as the sum of convex functions. �

In this case the CR algorithm is actually a gradient algorithm, since the iteration

process reduces to

τk+1 = τk −
1

n

∑

j

�

1−
δ j

|z j − τ|

�

+

(z j − τk). (3.11)

3.3. An over-relaxed CR algorithm

An over-relaxed version of the CR algorithm was also used for applications

(see [13]). Let us describe in few words this over-relaxation process. Introduce

a parameter λ ∈ [0,1]. The idea is to enforce the constraints by computing the

projections onto the sets t j + λΩ j instead of t j +Ω j .

The effect of this parameter transpires on the pure translation displacement

case. If we are interested in computing the speed of convergence of this iteration

process (3.11), using that p j is a 1-Lipschitzian operator, we have that if ϕ(τk)

denotes the right hand side of (3.11)

|ϕ(τ)−ϕ(σ)| ≤
1

n

∑

j;z j−τ 6∈Ω j

|p j(z j −τ)− p j(σ j −τ)|

≤
#{ j; Dv j − t j 6∈ Ω̄ j}

n
|τ−σ|. (3.12)

The rate of the geometric convergence, i.e. ν =
#{ j;Dv j−t j 6∈Ω̄ j}

n
, is smaller when the

derogation number is larger. The use of the λ parameter can be understood as

follows (this is clear for the algorithm restrained to translations); for λ = 0 the

CR algorithm reduces to the least square method and converges in 1 iteration, but

the target is too reduced to get a solution. For λ < 1, the λ parameter enforces a

geometric speed of convergence to the solution by over-relaxing the constraints.

3.4. Remarks on the implementation of the algorithm

The first issue we want to address is how to compute the polar decomposition of

the matrix H. We chose here to follow the singular decomposition method advocated

in [4], [7].

The second is the explanation of the convergence test. The algorithm described

in section 3 is stopped when |E(Dk+1)− E(Dk)| ≤ ε for a given real ε. In all the

numerical tests presented bellow, ε is equal to 10−6.

84 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

The third one is the following issue: How to chose a good λ parameter? In practise

λ < 1 but close to 1 is advocated in the process (see [13] for a discussion).

4. A Minimizing Derogation Number Algorithm

We have observed in the previous section that the CR algorithm is actually a

descent algorithm. The drawback of these algorithms for non convex optimization

problems is that the minimizing sequence can be trapped in the neighborhood of

a local minimizer. Moreover the search space to minimize the derogation number

is huge. Among families of algorithms that have proven their efficiency to handle

these problems (local search algorithms, tabu search, simulated annealing, genetic

algorithms, . . . this list is by no mean exhaustive), stochastic local algorithms

are among the most successful and widely used for solving hard combinatorial

problems. These algorithms belong to the subclass of Las Vegas algorithms [3];

we refer the interested reader to chapter 4 in [14] for an empirical analysis of

performances.

We present below a more precise stochastic local search algorithm to handle the

minimization of the derogation number.

4.1. Stochastic Local Search algorithm

In mathematics and in computer sciences, stochastic have been used for years to

solve optimization problems such as, for example, the Traveling Salesman Problem

[15], or even decision problem as satisfiability problem [17, 11, 18, 14, 16]. Below

is written the general structure of these algorithms.

Algorithm 1 Local Search algorithm

Require: problem instance π

Ensure: solution s ∈ Sπ that is the best candidate solution (with respect to

objective function) found at any time during the search

1: sm ← init(π)
2: s← sm

3: while not terminateπ(s) do

4: s′← stepπ(s)
5: /* Next test can be included in step function */

6: if fπ(s
′)< fπ(sm) then

7: sm← s′

8: end if

9: s← s′

10: end while

11: return sm

Let us introduce the general framework for our stochastic algorithm (see [12]).

Let consider an optimization problem π. Let us define the search-space Sπ as the

Algorithms for Constrained Best-fit Alignment 85

set of possible solutions, that are given as the iterates of a descent algorithm for

instance; hence Sπ is a discrete space. Let fπ be the fitness function, also called

the objective function. The basic principle of local search algorithms is to walk

among the set Sπ, considered as the vertices of a graph, to seek for the solution

that achieves the minimum of fπ. To walk along Sπ, we need to connect the points

of Sπ by edges, i.e. to define the notion of neighbors for any given point. To sum

up, we then need

• the representation of Sπ;

• the evaluation function (also called fitness function) to evaluate the quality of

a candidate solution. This function is often the same as fπ;

• the neighborhood function which determines the set of possible solutions s′

which are in the neighborhood of each candidate solution s, in order to walk

step by step in the search-space;

• the step function which determines the next step of the algorithm. This

function often uses the evaluation and neighborhood functions. It is very

important since it guides the search towards a good quality solution. The

difficulty lies in the fact that there might exist some local extrema in the

search-space. A local extremum is a candidate solution s such that no neighbor

of s has a higher quality than s. One way to deals with local extrema is to

introduce some noise in the walk. When probabilities are used to determine

the step, this kind of algorithm is called stochastic.
• A good initialization, referred as init, and a stopping test terminate to decide

when to stop.

There is no guarantee that the algorithm converges towards the solution which

have the best quality. The efficiency of such algorithm strongly depends on its

components listed above.

4.2. A Greedy Minimizing Derogation Algorithm

In order to minimize derogations, we have developed a Greedy Minimizing
Derogation (GMD) Algorithm which is a stochastic local search algorithm. It is

based on the baselines presented in algorithm 1. Accordingly to the previous

subsection, we then introduce (referring also to Section 2.1 for mathematical

notations)

• The search-space S is defined as the set of rigid displacements D = (M ,τ).

This set is not discrete but in practise we walk along discrete subsequences;

actually S is the set a discrete paths given by a descent algorithm such as CR.

• Since the goal of the algorithm is to minimize derogations, we choose for

evaluation function the fitness function, namely

Eval : S→ N

D 7→ N(D)
(4.1)

86 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

where N(D) is the derogation number defined in (2.2).

• the neighborhood function is defined accordingly to the following rules, that

are different respectively to a step using translation or a step using rotations,

Neigh : S→ P(S)

D 7→ Vt(D)∪Vr(D);
(4.2)

where P(S) denotes the set of the parts of S and

⊲ The set of the neighborhood of D = (M ,τ) on the translations is defined

as

Vt(D) =
�

D′ = (M ,τ′) ∈ S : ∃ ℓ with Dvℓ − tℓ 6∈ Ωℓ

and τ′ = Dvℓ − pℓ(Dvℓ)
	

.
(4.3)

⊲ The set of the neighborhood of D = (M ,τ) on the rotations is defined as

Vr(D) =
�

D′ = (M ′,τ) ∈ S : ∃ ℓ j 1≤ j ≤ m1 with Dvℓ j
− tℓ j

6∈ Ωℓ j
,

∃ ℓ j , m1 + 1≤ j ≤ m with Dvℓ j
− tℓ j

∈ Ωℓ j
and

M ′ maximizes I} (4.4)

where I(D) =
m
∑

j=1

(M vℓ j
, pℓ j
(M vℓ j

− τ)). This functional is maximized as

in Lemma 3.2.

Remark 4.1. The set Vt(D) is in bijection with the set of indices It(D) = {ℓ ∈ N :

1≤ ℓ ≤ n, Dvℓ − tℓ 6∈ Ωℓ}, and similarly with the set of indices Ir(D) with Vr(D).

• The step function is described in Algorithm 2. Consider a possible solution D
and a probability P̄ . Chose among the derogated points one point to move

inside the constrained domain. This choice is performed either by function

Choose_in_trans at line 2 or Choose_in_rot in line 8; we use more often

translations than rotations.

• On the one hand, for Choose_in_trans, the idea is to chose the index ℓ ∈

It(D) such that vℓ is the nearest point from its Ωℓ (this way we lower the

perturbation on the other points). Of course, the problem with this method

is to produce a ping-pong effect where we go back and forth on a 2-cycle

sequence of possible solutions; this drawback is avoided by using some noise,

associating to any derogated point the probability to be chosen as

P (ℓ) =
1

|Dvℓ − tℓ|

�

∑

v j |Dv j−t j 6∈Ω̄ j

1

|Dv j − t j |

�−1

.

The chances to chose a point is higher if the point is close to Ω. On the other

hand, the function Choose_in_rot consists in choosing indices ℓ j , 1 ≤ j ≤ m
in the set Ir(D), and maximizing I defined in (4.4) and Lemma 3.2. The

discussion on the choice of the parameters m1 and m are realized in Section 6

below.

Algorithms for Constrained Best-fit Alignment 87

Algorithm 2 Step Function

Require: a candidate solution D, a probability P̄ , 1≤ m1 ≤ n and 1≤ m ≤ n
Ensure: the next candidate solution

1: D′ = Choose_in_trans(Vt(D))
2: qD = Eval(D)
3: qD′ = Eval(D′)
4: if qD′ < qD then

5: return D′

6: else

7: D′′ = Choose_in_rot(Vr(D), m1, m)
8: qD′′ = Eval(D′′)
9: P ′ = random probability in [0,1]

10: if qD′′ < qD orP ′ > P̄ then

11: return D′′

12: else

13: return D′

14: end if

15: end if

The global algorithm is then: for any given displacement D, define a

neighbor D′ using Choose_in_trans. If the quality of this neighbor is better

than D, it is chosen as next candidate solution; if not new neighbor D′ is

defined using Choose_in_rot. Either the quality of this new point is better and

then it is chosen as the next candidate solution, or it is worse and it could be

chosen if the probability (line 11) is larger than the threshold value P̄ . Here

we have introduced some stochasticity through the rotations to avoid local

minima.

• The init function is the same as the energy decreasing algorithm initialization

described in Section 3.

• The terminate predicate is true when a preset number of step is reached or

when the evaluation function reaches 0.

5. CMA-ES: Covariance Matrix Adaptation Evolution Strategy

In this paragraph, we introduce an algorithm, called CMA-ES ([8]), which is

an evolutionary algorithm (as genetic algorithm) for difficult non-linear or non-

convex optimization problems in continuous domain. Evolutionary algorithms

are inspired from biological evolution: reproduction, mutation, recombination and

selection. They used theses techniques as operators. They are applied in a loop,

called “generation”. The generations stop until a terminate criterion is reached.

In an evolution strategy ([5]), new candidate solutions are sampled according

to a multivariate normal distribution. Pairwise dependencies between the variables

88 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

in this distribution are described by a covariance matrix. The covariance matrix

adaptation (CMA) is a method to update the covariance matrix of this distribution.

The sketch of CMA-ES (see [8, 10]) is described in algorithm 3. In this algorithm

constants cc , cσ, ccov, µcov, dσ, µeff, wi for i = 1, . . . ,µ are set to their default values

(see [10, 8]). The only parameters are m ∈ R
n, that is the initial solution and

σ ∈ R+ the step-size.

Algorithm 3 (µw,λ)CMA-ES

Require: m ∈ R
n, σ ∈ R+.

Ensure: m the favorite solution

1: pσ ← 0, pc ← 0, C ← I , g← 0

2: while not terminate do

3: •Sample new population of search points

4: for i = 1, . . . ,µ do

5: zi sNi(0, C)
6: x i ← m+σzi

7: end for

8: •Selection and recombination

9: 〈z〉sel ←
µ
∑

i=1

wizi:λ where
µ
∑

i=1

wi = 1, wi > 0

10: m← m+σ〈z〉sel
11: •Covariance matrix adaptation

12: pc ← (1− Cc)pc +
p

1− (1− Cc)
2
p

µeff〈z〉sel

13: C ← (1− ccov)C + ccov pc pT
c + ccov

�

1− 1

µcov

�

Z where Z =
µ
∑

i=1

wizi:λz
T
i:λ

14: •Step-size control

15: pσ← (1− Cσ)pσ +
p

1− (1− Cσ)2
p

µeff

1

2 〈z〉w

16: σ← σ× exp
�

cσ
dσ

�

‖pσ‖
E‖N (0,I)‖

− 1
��

17: end while

18: return (m)

The algorithm starts with sampling a new µ size population of search points

(see line 3). This is done by using m, C and σ.

The distribution mean m is updated (see line 8): let x i:µ be the i-ranked solution

point such that f (x1:µ) ≤ · · · ≤ f (xµ:µ) where f is the fitness function. The best µ

parents are selected and weighted intermediate recombination is applied.

Next Covariance matrix C and evolution path pc are updated (see line 11).

The goal of covariance matrix updating is to increase the probability of successful

steps 〈z〉sel to appear again. Conceptually, the evolution path is the path the

strategy takes over a number of generation steps. It can be expressed as a sum

of consecutive steps of the mean m.

Finally σ is updated thanks to path length control pσ (see line 14).

Algorithms for Constrained Best-fit Alignment 89

The algorithm iterates until a termination criteria is reached. In general, the

algorithm should be stopped whenever it becomes a waste of CPU-time to continue,

and it would be better to restart (eventually with increased population size)

or to reconsidering the encoding and/or objective function formulation. Many

termination criteria have been developed (see for example [2, 9]).

In practice, CMA-ES obtains good results on various problems or benchmarks

[6, 9] and on other advantage of CMA-ES is that it takes only two parameters

contrary to others same kind algorithms. The drawback of these kind of technique

is that there is no guarantee that the minimum is achieved.

6. Numerical results

In this section we provided several numerical results of the different algorithms.

All of them have been implemented under Scilab∗.

6.1. Quality criteria for the computed solutions

In order to evaluate the quality of the computed displacement D, we use several

criteria

• The derogation number (N(D)).
• The maximal error, that is the distance between the further point to its

tolerance domain

E∞(D) = max
j=1...n

|Dv j − p j(Dv j)|.

• The least square error, that is the L2 norm of the tolerance error E(D), defined

in (2.4).

• The free least square error Q2(D), without constraints,

Q2(D) =
1

2

n
∑

j=1

|Dv j − t j|
2.

6.2. First numerical results

To begin with, we introduce a synthetic example to calibrate the parameters

used in our algorithms. Let us describe this example. As seen in Figure 1, we

have to align two structures accordingly to the tolerances around 50 points. The

tolerance domains Ω j have the same size and chosen to be a square with a length

side equal to 0.05m. Let us emphasize the ratio between the structure and the

tolerances (0.2%), and also between the number of degrees of freedom of the

system according to the number of constraints (6%). In this artificial example, we

know that there exists a displacement D such that N(D) = E∞(D) = E(D) = 0.

We present now the initial situation, and the results given after the least square

iteration.

∗http://www.scilab.org/

90 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Figure 1. The structure to be assembled in synthetic example

Initial situation (D0 = I):

• N(D0) = 3;

• E∞(D0) = 1.330 · 10−3;

• E(D0) = 8.393 · 10−4.

• Q2(D0) = 2.318 · 10−1.

After the first least square iteration:

• N(D1) = 3;

• E∞(D1) = 4.454 · 10−3;

• E(D1) = 2.956 · 10−3.

• Q2(D1) = 2.265 · 10−1.

We observe that after one iteration three points do not satisfy the constraint

requirements.

6.3. Results of the Constrained/Rigid (CR) Algorithm

This section is devoted to describe the results obtained by the CR algorithm.

After convergence the displacement given by the algorithm is denoted by D̄. We

discuss here the choice of the parameter λ.

Discussing the λ parameter. In this algorithm, the only parameter is the λ

parameter. In Table 1, we can observe the influence of this parameter on the

convergence of the method, and on the quality of the computed solutions. The

algorithm is performed until E(Dk) = 0 or |E(Dk+1)− E(Dk)| ≤ ǫ, with ǫ = 10−6.

We observe in Table 1 that we obtain a solution with a derogation number equal

to 0 only for λ equal to 0.95 and 0.98. If λ = 1, the derogation number is equal

to 2, but with points very close from their tolerances (E(D̄)≃ E∞(D̄) ≃ 3× 10−5).

For λ smaller than 0.95, we have only 1 point outside its tolerance, but this point

is very far to his tolerance domain, and the convergence is slower. In consequence,

the parameter λ will be taken equal to 0.95 in the remaining of this section.

Algorithms for Constrained Best-fit Alignment 91

Table 1. Influence of parameter λ, on the synthetic example, for CR algorithm

λ 0.7 0.8 0.9 0.95 0.98 1

Nb of iterations 46 57 91 23 37 132

N(D̄) 1 1 1 0 0 2

E∞(D̄) 2.444 · 10−3 2.096 · 10−3 9.935 · 10−5 0 0 3.294 · 10−5

E(D̄) 1.728 · 10−3 1.482 · 10−3 7.025 · 10−5 0 0 2.947 · 10−5

Q2(D̄) 0.229 0.230 0.230 0.228 0.228 0.228

In order to study the behavior of the algorithm during the iterations, we present

some plots. Figure 2 shows the number of points outside tolerances versus the

iterations (λ = 0.95). We can observe in this figure that the derogation number is

decreasing. This is not always the case and the derogation number could increase

among the iterations, for instance see the next example.

Figure 2. Number of points outside the tolerances versus the iterations

(CR algorithm, λ= 0.95)

Figure 3 shows the evolution of the least square error versus the iterations. The

first iteration of the process decreases the free least square error Q2, while the next

iterations increase it. This indicates that the free last square error is not as good as

expected as a quality indicator since we have to move points away from the centers

of the tolerance domains to decrease the energy E.

Figure 4 shows the evolution of E(D) versus the iterations. Since the very

definition of the CR algorithm is a descent algorithm for this energy, we observe

that the numerics fit with the theory.

For the sake of completeness, we have also performed a penalty method to solve

the minimization process. The penalty method reads: minimize

Fǫ(D) =
1

2

n
∑

i=1

|Dv j − t j|
2 +

1

ǫ
E(D) =Q2(D) +

1

ǫ
E(D).

92 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Figure 3. Least square error Q2(Dk) versus the iterations k (CR

algorithm, λ= 0.95)

Figure 4. E(Dk) versus the iterations k (CR algorithm, λ = 0.95)

The drawback of the method is that we have to calibrate another parameter ǫ.

Restricted to translations, this energy is strictly convex and any classical gradient

method can be used. For this method, we obtain, for ǫ = 10−6 and λ= 0.95, after

2,363 iterations: N(D̄) = 1, E∞(D̄) = E(D̄) = 2.76 · 10−3, Q2(D̄) = 0.232.

6.4. Results of GMD algorithm

Since GMD is a stochastic algorithm, then two runs can give two different

results. So, in order to evaluate the quality of the results, we provide

• The best result given by the algorithm over all runs.

• The percentage of successful tries defined as the ratio of successful runs over

the total number of runs.

Algorithms for Constrained Best-fit Alignment 93

• For any quantity as quality indices Q the expectation 〈Q〉. We run n GMD

algorithms and for each run t we compute Q(t) and then we average over the

number of runs. For instance if Q = N(D) is the derogation number, Q(t) is

the best value reached during the run.

• For any successful run, let us denote by nsteps the number of steps to reach

the best solution. We compute then 〈nsteps〉 that is the average of such

quantities over the number of successful runs.

• The worst value possible max C along a run for a quantity C .

Discussing the parameters m1 and m. In this paragraph, we pay attention to the

influence of the parameters m1 and m that play a role into the GMD algorithm. Let

us recall that m1 represents the number of derogation points that are very close to

the boundary of their tolerance domain while m is the number of insiders that are

close to the center of the tolerance domain. For the sake of convenience, and to

avoid numerical difficulties, we substitute in the sequel in some places respectively

min(m, Nin(D)) and min(m1, N(D)) to of m and m1, where Nin(D) is the number

of points inside their tolerance domain.

Due to the numerics in the previous section, we have chosen to use a λ

parameter to be either 0.95 or 0.98. Both values have been considered but we

only provide the best results obtained with λ = 0.98 in Table 2. In this simulation,

the other parameters are: Nruns= 100 and Nsteps= 50.

As expected, the rotation step modifies subsequently the system if few points

are inside their tolerance domains. While m = Nin(D) increases, the rotation step is

less efficient to enforce the derogation points to go inside their tolerance domain.

Moreover, if m1 increases one can get a solution that throw points outside their

tolerance domain. The chance to get a successful run is bigger for m1 = 3 and

m = 20; for these values the other quality criteria are successfully satisfied. For

these reasons, we fix the values m1 = 3 and m = 20 in the experiments below.

Discussing the parameter λ, revisited. We discuss in this paragraph the influence

of the parameter λ. For these experiments, the other parameters are set to:

(m1, m) = (3,20), the number of tries is Nruns = 100 and the number of steps

for each try is Nsteps= 50. Table 3 presents results for λ from 0.7 to 1.

For these experiments, the best percentage of successful tries is obtained for

λ = 0.98. It confirms that it is better to take λ < 1 but close to 1. We also observe

that for λ less than 0.98, the algorithm does not often obtain a solution D such

that the derogation number is small (less than 25% of the total number of points).

Let us note that for λ = 0.98 the average number of steps to reach the solution is

small, about 7 steps with an initial derogation number N(D1) = 3. So the λ has

been set to 0.98 in the experiments to follow.

94 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

Table 2. Influence of parameters m and m1 for GMD algorithm, for

the synthetic example (λ = 0.98, Nruns= 100, Nsteps= 50)

(m1, m) (1,10) (2,10) (3,10) (1,20) (2,20) (3,20)

N(D̄) 0 0 0 0 0 0

% successful tries 13 30 13 92 95 97

〈N(D)〉 0.87 0.69 0.87 0.08 0.06 0.01

max N(D) 1 1 1 1 1 1

〈E∞〉(×10−4) 1.93 2.17 2.99 0.26 0.13 0.03

max E∞(×10−4) 3.68 3.68 3.68 3.67 3.68 3.68

〈E〉(×10−4) 1.93 2.17 2.99 0.26 0.13 0.03

max E(×10−4) 3.68 3.68 3.68 3.67 3.68 3.68

Q2(D̄) 0.229 0.230 0.229 0.229 0.229 0.229

〈Q2〉 0.230 0.230 0.230 0.229 0.229 0.229

maxQ2 0.231 0.231 0.232 0.230 0.230 0.230

(m1, m) (1,Nin(D)) (2,Nin(D)) (3,Nin(D))
N(D̄) 0 0 0

% successful tries 67 80 83

〈N(D)〉 0.32 0.31 0.18

max N(D) 1 1 1

〈E∞〉(×10−4) 0.84 0.74 0.35

max E∞(×10−4) 3.68 3.68 3.68

〈E〉(×10−4) 0.84 0.74 0.35

max E(×10−4) 3.68 3.68 3.68

Q2(D̄) 0.231 0.232 0.232

〈Q2〉 0.231 0.229 0.232

maxQ2 0.233 0.232 0.232

Table 3. Influence of parameters λ for GMD algorithm for the synthetic

example (m1 = 3, m= 20, Nruns= 100, Nsteps= 50)

λ 0.7 0.8 0.9 0.95 0.98 1

N (D̄) 0 0 0 0 0 0

% successful tries 6 7 15 23 97 79

〈N (D)〉 1.44 1.32 0.84 0.84 0.03 0.21

max N (D) 2 2 2 1 1 1

〈Nsteps〉s 4 17.25 18.5 32.05 6.05 17.46

〈E∞〉 1.07× 10−3 1.27× 10−4 8.60× 10−4 1.15× 10−4 8.07× 10−6 1.48× 10−16

max E∞ 4.81× 10−3 6.36× 10−4 7.69× 10−3 1.45× 10−4 3.68× 10−4 7.07× 10−16

〈E〉 1.18× 10−3 1.20× 10−4 8.56× 10−4 1.15× 10−4 8.07× 10−6 1.48× 10−16

max E 4.81× 10−3 6.37× 10−4 7.69× 10−3 1.47× 10−4 3.68× 10−4 7.08× 10−16

Q2(D̄) 0.230 0.231 0.230 0.232 0.232 0.230

〈Q2〉 0.232 0.232 0.231 0.229 0.229 0.229

maxQ2 0.235 0.237 0.237 0.230 0.232 0.231

6.5. Results of CMA-ES algorithm

As we presented it in previous section (see 5), CMAS-ES takes only few

parameters: m ∈ R
n, σ ∈ R+. CMA-ES aims to optimize problems in continuous

Algorithms for Constrained Best-fit Alignment 95

domain so the functional to minimize is the same as CR algorithm:

J(D) =
1

2

n
∑

j=1

|Dv j − p j(Dkv j)|
2

We ran (3/3_W, 7)-CMA-ES† ([8]) where termination criteria are:

• tolfun: stop if within-iteration function value differences are smaller than

1e− 12

• tolfunhist: stop if function value backward differences are smaller than

1e− 12

• tolx: stop if x-changes are smaller than 1e− 11×σ

• tolupx: stop if x-changes are larger than 1e3×σ

• fitness: target objective function value (minimization)

• maxfunevals: maximal number of function evaluations

• maxiter: maximal number of iterations (33142)

We have assessed it with different values of m and σ. CMA-ES always found

the displacement such that N(D̄) = 0 (termination criterion is fitness). Let us

note that for this example we do not use λ. In Table 4, we present results for

m = [0;0;0] and σ = 0.3. As CMA-ES is an evolutionary algorithm, we provide

Evaluations: the individual evaluation number (one step generates 7 evaluations).

The averaged results 〈·〉 are computed on 100 runs of CMA-ES.

Table 4. Results obtained with the CMA-ES Algorithm on the synthetic example

〈Evaluations〉 504

N(D̄) 0

〈N(D)〉 0

〈E∞〉 0

〈E〉 0

〈Q2〉 0.230

maxQ2 0.233

6.6. Comparisons

In this example, all algorithms are able to find solutions with a derogation

number equal to zero. Moreover, the solutions have the same quality (Q2(D̄) ≃
0.23). Only CMA-ES is λ independent.For the other algorithm if the parameter λ

is not well chosen (for example λ = 0.8), only the GMD algorithm is able to find a

solution that cancels the derogation number. Observe that in this example, the CR

algorithm is less expensive than the greedy GMD algorithm and CMA-ES algorithm.

Actually it takes 23 iterations to the CR algorithm. For GMD algorithm, in the worst

case for 100 planed runs of 50 steps, it takes 3%×100×50 (unsuccessful first three

†source code can be downloaded on http://www.lri.fr/~hansen/cmaesintro.html

96 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

tries with 50 steps) +7 (the fourth with an average of 7 steps) = 157 iterations

and for CMA-ES it takes 504 evaluations (72 steps).

6.7. A second example

The second example has globally the same geometry of the first example (see

Figure 1), but the points have been moved a little bit in such a way that N(D0)

is equal to 11 for the initial situation.We first present the quality criteria for the

initial situation.

Initial situation (D0 = I):

• N(D0) = 11;

• E∞(D0) = 3.700 · 10−3;

• E(D0) = 3.470 · 10−3.

• Q2(D0) = 0.326;

and after a first least square iteration:

• N(D1) = 10;

• E∞(D1) = 9.117 · 10−3;

• E(D1) = 1.150 · 10−2.

• Q2(D1) = 0.322.

Results given by Constraint/Rigid algorithm, with λ = 0.95. Results obtained with

the CR algorithm, with λ equal to 0.95 are presented in Table 5.

Table 5. Results obtained with Constraint/Rigid algorithm, on

the second example

λ 0.95

Nb of iterations 43

N(D̄) 8

E∞(D̄) 4.307 · 10−3

E(D̄) 3.684 · 10−3

Q2(D̄) 0.326

After the convergence is achieved (43 iterations), the derogation number is still

equal to 8.

Results given by GMD algorithm. In this paragraph we present results obtained with

the GMD algorithm. First, Table 6 shows the quality criteria of the best solutions

obtained with Nruns= 100, λ= 0.98.

We can observe that with this method, we can obtain displacements D̄ such that

N(D̄) is equal to 4 but the chance to succeed is small (only 3%). It means that for

other runs N(D̄) is worst than 4. Indeed, the expectation 〈N(D̄)〉 is almost equal

to 5, so the algorithm often converges to 5.

Algorithms for Constrained Best-fit Alignment 97

Table 6. Quality and Statistical results obtained with GMD algorithm,

on the second example

Nsteps 50

N(D̄) 4

% successful tries 3

〈N(D)〉 5.2

max N(D) 6

〈E∞〉 7.263 · 10−3

max E∞ 1.291 · 10−2

〈E〉 9.691 · 10−3

max E 1.456 · 10−2

〈Q2〉 0.326

maxQ2 0.329

E∞(D̄) 9.0361 · 10−3

E(D̄) 9.7423 · 10−3

Q2(D̄) 0.327

Discussion on the number of steps for each run. In this paragraph, we study the

influence of the number of runs, and the number of steps for each run, in order

to optimize the speed of the algorithm and the quality of the best displacement

found by GMD algorithm. These experiments have not been made on the synthetic

example since the convergence was very fast.

In this simulation, the number of runs is equal to Nruns = 100 and the other

parameters are λ= 0.98, m1 = 3 and m= 20. The results are provided in Table 7.

Table 7. Influence of the number of steps for GMD algorithm for each

run for the second example (λ= 0.98, m1 = 3, m= 20 and Ntries= 100)

Nsteps 10 20 30 40 50 60 70

N(D̄) 4 4 4 4 4 4 4

% successful tries 1 1 2 2 3 3 4

〈N(D)〉 6.12 5.71 5.62 5.47 5.20 5.36 5.22

max N(D) 9 8 7 7 6 6 6

〈E∞〉(×10−3) 7.00 8.01 7.11 6.88 7.26 7.14 7.19

max E∞(×10−2) 1.35 1.73 1.37 1.23 1.29 1.24 1.39

〈E〉(×10−3) 10.1 10.8 9.73 9.42 9.69 9.69 9.56

max E(×10−2) 1.81 3.20 1.96 1.61 1.46 1.46 1.39

Q2(D̄) 0.327 0.327 0.327 0.327 0.326 0.326 0.326

〈Q2〉 0.326 0.326 0.326 0.326 0.326 0.326 0.326

maxQ2 0.330 0.327 0.331 0.332 0.329 0.328 0.328

These results show that higher the number of steps is, better are 〈N(D)〉,
max N(D); the number of successful runs also increases with the number of steps

98 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

allowed. This is not true for the other criteria. Since increasing the number of steps

in each run is costly, we recommend to take less than 50 steps for each run.

Results given by CMA ES algorithm. We ran (3/3_W, 7)-CMA-ES‡ ([8]) with the

same termination criteria as the previous example. We have tried different values

for σ and m that have given the same results. In Table 8, we present results

for m = [0;0;0] and σ = 0.3 where termination criteria are tolfun and

tolfunhist. If we introduce λ in this algorithm as other ones, it gives a better

N(D̄) (the termination criteria are the same that previous) but 〈E∞〉 and 〈E〉 are

greater than the λ independent version as presented in Table 9.

Table 8. Results obtained with CMA-ES Algorithm on the second example

〈Evaluations〉 1120

N(D̄) 11

〈N(D)〉 11

max N(D) 11

〈E∞〉 3.032 · 10−3

max E∞ 3.032 · 10−3

〈E〉 3.281 · 10−3

max E 3.281 · 10−3

〈Q2〉 0.326

maxQ2 0.326

Table 9. Results obtained with CMA-ES Algorithm on the second

example with λ= 0.9

〈Evaluations〉 1108

N(D̄) 6

〈N(D)〉 6

max N(D) 6

〈E∞〉 5.299 · 10−3

max E∞ 5.299 · 10−3

〈E〉 4.441 · 10−3

max E 4.441 · 10−3

〈Q2〉 0.325

maxQ2 0.325

Comparisons. We compare in this paragraph the three algorithms on the second

example (Tables 5 to 9). Results show that the CR algorithm is not able to find a

displacement D̄ such that N(D̄) is less than 8 for the second example. Therefore

the GMD algorithm can significantly improve the results in this situation; the

expectation of the derogation number is smaller and one can achieve N(D) = 4.

Nevertheless, if the other quality criteria are considered, the results are better for

the CR algorithm. In fact, E(D̄) is less than 4×10−3 for the CR algorithm and more

‡Source code can be downloaded on http://www.lri.fr/~hansen/cmaesintro.html

Algorithms for Constrained Best-fit Alignment 99

than 6×10−3 for the GMD algorithm, and E∞(D̄) is less than 4.4×10−3 for the CR

algorithm and more than 5× 10−3 for the GMD algorithm. In other words, each

algorithm we provided is better for is own criterion, which is the energy E(D) for

the CR algorithm, and the derogation number N(D) for the GMD algorithm. If we

compare both algorithm results with CMA-ES ones, without λ parameter it gives

better results for E∞(D̄) and E(D̄) than CR one but it is worst for N(D̄). With λ

parameter sets, conclusions are reversed. In this case, nevertheless it gives better

E∞(D̄) and E(D̄) than GDM algorithm but not for N(D̄). In this example, one can

also observe that each algorithm obtains better results for its own criterium (E(D̄)
for CR and CMA-ES algorithms, and N(D̄) for GMD algorithm).

7. Conclusion

In this article which partakes of mathematical and computer sciences

optimization, we have introduced and used one deterministic algorithm, called CR

algorithm, that is a descent algorithm for a non convex functional. This algorithm

provides us with interesting results. In some particular case, we need a stochastic

meta-algorithm, called GMD algorithm, that can decrease significantly the number

of derogations numbers in cases where the CR algorithm fails.

References

[1] F. Alouges, A new algorithm for computing liquid crystal stable configurations: the

harmonic mapping case, SIAM Journal on Numerical Analysis 34(5) (1997), 1708–

1726.

[2] A. Auger and N. Hansen, A restart CMA evolution strategy with increasing population

size, in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1769–1776,

2005.

[3] L. Babai, Monte Carlo algorithms in graph isomorphism testing, Technical Report DMS
79-10, Universite de Montreal, Montreal, Canada, 1979.

[4] B. Bartoux, Methode “+n”: Modelisation, Technical report, LAMFA-CNRS UMR 6140-,

University of Picardie, 2008.

[5] H.-G. Beyer and H.-P. Schwefel, Evolution strategies: a comprehensive introduction,

Journal Natural Computing 1(1) (2002), 3–52.

[6] Special Session on Real-Parameter Optimization of IEEE Congress on Evolutionary
Computation (CEC) 2005, 2005.

[7] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,

1996.

[8] N. Hansen, The CMA evolution strategy: a comparing review, in Towards A

New Evolutionary Computation. Advances on Estimation of Distribution Algorithms,

pp. 75–102, Springer, 2006.

[9] N. Hansen, Benchmarking a BI-population CMA-ES on the BBOB-2009 function

testbed, in Workshop Proceedings of the GECCO Genetic and Evolutionary Computation
Conference, pp. 2389–2395, 2009.

[10] N. Hansens, The CMA Evolution Strategy: A Tutorial, Tutorial, March 2010.

100 Laure Devendeville, Serge Dumont, Olivier Goubet, and Sylvain Lefebvre

[11] E.A. Hirsch and A. Kojevnikov, Unitwalk: A new SAT solver that uses local search

guided by unit clause elimination, Annals of Mathematics and Artificial Intelligence
43(1-4) (2005), 91–111.

[12] H.H. Hoos and T. Stutzle, STOCHASTIC LOCAL SEARCH Foundations and Applications,
Elsevier, 2005.

[13] S. Lefebvre, Modeles mathematiques et outils informatiques pour lĄfassemblage de

structures aeronotiques par balancement spacial, Ph.D. Thesis, LAMFA-CNRS UMR
6140-, University of Picardie, 2009.

[14] C.M. Li, W. Wei and H. Zhang, Combining adaptive noise and look-ahead in local

search for SAT, in Proceedings of 10th International Conference on the Theory and
Applications of Satisfiability Testing (SAT2007), pp. 121–133, Lisbon, Portugal, May

2007.

[15] S. Lin, Computer solutions of the traveling salesman problem, Bell System Technical
Journal 44(1965), 2245–2269.

[16] D. Pham, J. Thornton, C. Gretton and A. Sattar, Combining adaptive and dynamic

local search for satisfiability, Journal on Satisfiability, Boolean Model Checking and
Computation, 2008.

[17] B. Selman, H.J. Levesque and D. Mitchell, Gsat: a new method for solving hard

satisfiability problems, in Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI’92), pp. 440–446, 1992.

[18] D.A.D. Tompkins and H.H. Hoos, On the quality and quantity of random decisions in

stochastic local search for SAT, in Proceedings of the 19th Conference of the Canadian
Society for Computational Studies of Intelligence (AI-2006), Vol. 4013 of Lecture Notes
in Artificial Intelligence, pp. 146–158, 2006.

Laure Devendeville, MIS EA 4290, Université de Picardie Jules Verne, 33 rue Saint-
Leu, 80039 Amiens cedex 1, France.
E-mail: laure.devendeville@u-picardie.fr

Serge Dumont, LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue
Saint-Leu, 80039 Amiens cedex 1, France.
E-mail: serge.dumont@u-picardie.fr

Olivier Gubet, LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue
Saint-Leu, 80039 Amiens cedex 1, France.
E-mail: olivier.goubet@u-picardie.fr

Sylvain Lefebvre, LAMFA CNRS UMR 7352, Université de Picardie Jules Verne, 33
rue Saint-Leu, 80039 Amiens cedex 1, France.
E-mail: sylvain.lefebvre@u-picardie.fr

Received January 21, 2012

Accepted May 23, 2012

