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1. Introduction
Because of uncertain data in the real world, various problems in mathematics, engineering,
environmental sciences, economics, and medical sciences cannot be solved by the usual
mathematical methods. The difficulty of the usual mathematical method is the lack of tools for
determining coefficients-determining tools to describe problems arising in areas of ambiguity
and uncertainty to deal with such problems climate algebra was introduced by Russian
mathematics and interesting properties arose when it could be provided with operations.
At the present time, Al-Banach algebra is a broad discipline with a variety of disciplines and
applications. This paper is based on a number of theories that represent the relationship between
the multiple linear functions in the Al-Banach algebra and its extremes, as well as with the
spectra of its elements in one way or another towards the central component of the well-known
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2 Some Results on the Spectral Radius of Banach Algebra: L. J. Barghooth

Gelfand-Mazur theory [5,6]. The spectral radius formula [6,11,13] and the Stone-Weierstrass
theory [3,12] and mapping theory [2,12] where this topic was addressed through a research
published in 2017, where the paper used the source [7,8,14] for the concept of Al-Banach soft
algebra and they studied some of its primary properties and from the sources used in this
research [4, 9, 12] and [1, 10], where the researcher presented the ideas of the soft spectrum,
radius of a soft algebra of Banach [8]. In this paper, we get some results on the spectral radius
of Al-Banach algebra. Them ain difference between the previous works and this paper is the
use of reversible elements, spectral radius and reversible element, spectral algebra and some
basic properties of these ideas in Banach algebra. Firstly, in sections two and three, we defined
a number of concepts and basic theorems, and then, in section four, we verify some results and
theories.

2. Preliminaries
In this section, we state some basic definitions and theorems [4,9,12], those we will use thorough
out the paper.

Definition 2.1. A normed algebra A is an algebra which is a normed space (A,∥ · ∥) and in
which

∥xy∥ ≤ ∥x∥∥y∥, x, y ∈ A.

We will mention and prove some results related to normed algebras.

Lemma 2.1. Let A be a normed algebra with unit e. Then, ∥e∥ ≥ 1.

Proof. Assume y ∈ A a normed algebra with y ̸= 0. Then

ye = ey= y .

Thus ∥ye∥ = ∥y∥. We get ∥ye∥ ≤ ∥y∥∥e∥. Therefore, ∥y∥ ≤ ∥y∥∥e∥ and thus ∥e∥ ≥ 1. Similarly, if
ey= y, then ∥e∥ ≥ 1.

Remark 2.1. We have to assume that additional ∥e∥ = 1.

Lemma 2.2. Let A be a normed algebra. Let y ∈ A, n ∈ N . Then

∥yn∥ ≤ ∥y∥n .

Proof. Using the mathematical induction:
Let n = 1. Then

∥y∥ ≤ ∥y∥, y ∈ A .

Now, let’s assume the statement is true for n = k,

∥yk∥ ≤ ∥y∥k, y ∈ A .

Now, we shall prove that it is true for n = k+1.
We have

∥yk+1∥ = ∥yk∥ (where y ∈ A)

≤ ∥yk∥∥y∥
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≤ ∥y∥k∥y∥
= ∥y∥k+1 .

Thus

∥yk+1∥ ≤ ∥y∥k+1 .

Hence ∥yn∥ ≤ ∥y∥n .

Lemma 2.3. Let A be a normed algebra. Let y ∈ A and n,m ∈N. Then.

∥yn+m∥ ≤ ∥y∥n+m .

Proof. Let y ∈ A. Then

∥yn+m∥ = ∥yn ym∥ (where y ∈ A)

≤ ∥yn∥∥ym∥
≤ ∥y∥n∥y∥m

= ∥y∥n+m .

Theorem 2.4. Let A be a normed algebra. If xn → x, yn → y (n →∞) in A, then xn yn → xy.

Proof. Let xn → x and yn → y in A. Then

∥xn yn − xy∥ = ∥xn yn − xn y+ xn y− xy∥
= ∥xn(yn − y)+ y(xn − x)∥
≤ ∥xn(yn − y)∥+∥y(xn − x)∥
≤ ∥xn∥∥yn − y∥+∥y∥∥xn − x∥
→ 0 (n →∞).

Hence xn yn → xy.

Theorem 2.5. Let (xn) and (yn) be bounded sequences in a normed in a normed algebra A. Then,
(xn yn) is a bounded sequence in A.

Proof. Let (xn) be a bounded sequence in A. Then, there exists a positive integer M1 such that
∥xn∥ ≤ M1, for all n.
Let (yn) be a bounded sequence in A. Then, there exists a positive integer M2 such that
∥yn∥ ≤ M2, for all n.
We have

∥xn yn∥ ≤ ∥xn∥∥yn∥ ≤ M1M2 .

Choose M = M1M2 > 0.
It follows that

∥xn yn∥ ≤ M, for all n.

Hence (xn yn) is a bounded sequence.

Theorem 2.6. Let A be a normed algebra, if (xn) and (yn) are Cauchy sequences in A, then
(xn yn) is a Cauchy sequence in A.
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Proof. Since xn is a Cauchy sequence in A, so (xn) is a bounded sequence. Then, there exists a
positive integer M such that

∥xn∥ ≤ M, n ∈N, for each ε> 0.

There exists a positive integer N such that

∥xn − xm∥ < ε

2M
, n,m > N.

Also, since (yn) is a Cauchy sequence, so (yn) is a bounded sequence. Then, there exists a positive
integer M such that

∥yn∥ ≤ M, n ∈N.

Similarly, for each ε> 0, there exists a positive integer N such that

∥yn − ym∥ < ε

2M
, n,m > N.

We have

∥xn yn − xm ym∥ = ∥xn yn − xm yn + xm yn − xm ym∥
= ∥yn(xn − xm)+ xm(yn − ym)∥
≤ ∥yn(xn − xm)∥+∥xm(yn − ym)∥
≤ ∥yn∥xn − xm∥∥+∥xm∥∥yn − ym∥
≤ M

ε

2M
+M

ε

2M

= ε

2
+ ε

2
= ε.

Hence (xn yn) is a Cauchy sequence in A.

Definition 2.2. Let (A,∥ · ∥) be a normed algebra. If A is complete with relative to this norm
(i.e., A is a Banach space), then A is called a Banach algebra.

We give some examples on Banach algebras.

Example 2.1. (i) The space R is a Banach space with the norm ∥x∥ = |x|, x ∈R. Then, for x, y ∈R:

∥xy∥ = |xy| = |x| |y| = ∥x∥∥y∥.

Hence R is a normed algebra. Then, R with addition to the usual and standard multiplication,
the dot multiplication is a commutative product Banach algebra.
Also, C with the usual structure and the norm ∥x∥ = |x| (x ∈ C), is a commutative Banach
algebra.

(ii) The norm on Mn×n is given by

∥A∥ =max

{
n∑

j=1
|ai j| : 1≤ i ≤ n

}
, A ∈ Mn×n.

Then, it is a Banach space.
Let A = (ai j), B = (bi j). Let A,B ∈ Mn×n. Then

∥AB∥ ≤ ∥A∥∥B∥.

Journal of Informatics and Mathematical Sciences, Vol. 14, No. 1, pp. 2–21, 2022



Some Results on the Spectral Radius of Banach Algebra: L. J. Barghooth 5

Hence Mn×n is a Banach algebra. Hence well-known matrix multiplication is not commutative.

(iii) The norm on C[a,b] is given by

∥ f ∥ = sup
a≤x≤b

(| f (x)|), f ∈ C[a,b].

Then, C[a,b] is a Banach space.
Let f , g ∈ C[a,b]. Then

∥ f g∥ = sup
a≤x≤b

(| f (x)g(x)|).
By Theorem there exists x0 in [a,b] such that

∥ f g∥ = | f (x0)| |g(x0)| ≤ ∥ f ∥∥g∥.

Hence C[a,b] is a commutative Banach algebra.

(iv) The norm on Cn[a,b] is given by

∥ f ∥ =
n∑

K=0

1
k!
∥ f (k)∥∞ , f ∈ Cn[a,b].

Then, Cn[a,b] is a Banach space.
Let f , g ∈ Cn[a,b]. Then

∥ f g∥ =
n∑

K=0

1
k!
∥( f g)(k)∥∞

=
n∑

K=0

1
k!

∥∥∥∥∥ k∑
j=0

(
k
j

)
f ( j) g(k− j)

∥∥∥∥∥
∞

=
n∑

K=0

∥∥∥∥∥ k∑
j=0

1
j!(k− j)

f ( j) g(k− j)

∥∥∥∥∥
∞

≤
n∑

K=0

n∑
j=0

1
j!

∥∥∥∥∥ f ( j)

∥∥∥∥∥ k∑
j=0

1
j!(k− j)

∥∥∥∥∥ g(k− j)

∥∥∥∥∥
∞

≤
n∑

i=0

n∑
j=0

1
j!
∥ f ( j)∥∞ 1

i!
∥g(I)∥∞

= ∥ f ∥∥g∥.

Then, ∥ f g∥ ≤ ∥ f ∥∥g∥.
Hence Cn[a,b] is a commutative Banach algebra.

(v) The norm on B(X , X ) is Banach space.

∥T∥ = sup{∥T(x)∥ : ∥x∥ ≤ 1}, T ∈ B(X , X ).

Then, B(X , X ) is a Banach space.
Let T1,T2 ∈ B(X , X ). Then

∥(T1T2)(x)∥ = ∥T1(T2(x))∥
≤ ∥T1∥∥T2(x)∥
≤ ∥T1∥∥T2∥∥x∥.
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Then

∥T1T2∥ ≤ ∥T1∥∥T2∥.

Hence B(X , X ) is a Banach algebra.

(vi) Let A(D) be the disc algebra with the norm

∥ f ∥ = sup
z∈D

(| f (z)|), f ∈ A(D).

Then, A(D) is a Banach space.
Let f , g ∈ A(D). Then

∥ f g∥ ≤ ∥ f ∥∥g∥.

Hence A(D) is a commutative Banach algebra.

(vii) The norm on L1(R) is

∥ f ∥ =
∫ ∞

−∞
| f (x)|dx, x ∈R, f ∈ L1(R).

Then, L1(R) is a Banach space and the product is given

( f ∗ g)(t)=
∫ ∞

−∞
f (x)g(t− x)dx.

Let f , g ∈ L1(R). Then

∥ f ∗ g∥ =
∫ ∞

−∞

∫ ∞

−∞
| f (x)g(t− x)|dtdx

=
∫ ∞

−∞
| f (x)|

(∫ ∞

−∞
|g(t− x)|dt

)
dx

=
∫ ∞

−∞
| f (x)| ∥g∥dx = ∥ f ∥∥g∥.

Hence L1(R) is a commutative Banach algebra.

(viii) The norm on t′1 is given by

∥a∥ =
∞∑

n=−∞
|an|, a ∈ t′1.

Then, t′1 is a Banach space and the product is given by

(a∗b)n =
∞∑

n=−∞
an−K bk , n ∈Z.

Let a,b ∈ t′1. Then∑
n∈Z

|(a∗b)n| =
∑
n∈Z

∣∣∣∣∣ ∑
k∈Z

|an−K bk|
∣∣∣∣∣

≤ ∑
n∈Z

∑
k∈Z

|an−k| |bk|

=
( ∑

k∈Z
|bk|

)( ∑
k∈Z

|an−k|
)
= ∥a∥∥b∥.

Hence t′1 is a norm algebra. Thus t′1 is a Banach algebra.

(a∗b)n = ∑
k∈Z

an−K bk =
∑
k∈Z

bkan−K .
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Set u = n−k,

(a∗b)n = ∑
k∈Z

bn−uau.

Hence t′1 is commutative.

(iv) Let A be a norm space over K . Let A∗ be the set of all ordered pairs (x,λ), where x ∈ A and
λ ∈C.
The norm on A∗ is given by

∥(x,λ)∥ = ∥x∥+|λ|.
Then, A∗ is a Banach space.
Let A be a normed algebra. Let (x1,λ1), (x2,λ2) ∈ A∗. Then

∥(x1,λ1), (x2λ2)∥ = ∥(x1x2 +λ1x2 +λ2x1,λ1λ2)∥
= ∥x1x2 +λ1x2 +λ2x1∥+|λ1λ2|
≤ ∥x1x2∥+∥λ1x2∥+∥λ2x1∥+|λ1λ2|
≤ ∥x1∥∥x2∥+|λ1|∥x2∥+|λ2|∥x1∥+|λ1| |λ2|
= (∥x1∥+|λ1|)(∥x2∥+|λ2|)
= ∥(x1,λ1)∥∥(x2,λ2)∥.

Thus A∗ is a normed algebra.
Hence A∗ is a Banach algebra with unit ẽ = (0,1). If A is commutative, then A∗ is commutative.

Definition 2.3. Let X be a compact T2. Let A be a subset of C(X ). Then, A is called separates
the points of X , if for each x, y ∈ X with x ̸= y, there exists f ∈ A such that f (x) ̸= f (y).

Definition 2.4. Let A be a subset of C(X ). Then, A is called self-adjoint points of X . If f ∈ A,
then f = A.

Theorem 2.7 (Stone-Weierstrass, [2]). Let X be a compact T2. Let A be a subset of C(X ) and
separating the points of X . If A is A is self-adjoint, then

A = C(x).

Remark 2.2. There are some Banach algebras which are not closed, e.g., let A = C1[0,1].
Then, A is Banach algebra (Example 2.1(iv)).
By Stone-Weierstrass theorem, we obtain C1[0,1]= C[0,1].
It follows that C1[0,1] is not closed.

Theorem 2.8 ([5]). Let A be a complex Banach algebra with unit. Then, every closed subalgebra
of A is itself a Banach algebra.

Theorem 2.9. Let A be a complex Banach algebra and suppose x in A is such that ∥x∥ < 1. Then,
there exists y ∈ A such that y= x+ y.

Proof. Since ∥x∥ < 1 and ∥xn∥ ≤ ∥x∥n, the series −x− x2− x3− . . . is absolutely convergent. Since
A is a Banach space, so the converges.
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Let the sum of the series be y. Then

xy=−x2 − x3 − x4 −·· · = x+ y.

Theorem 2.10 ([10]). Let A be a complex Banach algebra with unit. Then, every maximal ideal
of A is closed.

Theorem 2.11 ([10]). Let A be a complex Banach algebra with unit. Let I be an ideal of A. Then,
the closure of I is an ideal.

3. Reversible Elements of Banach’s Algebra
Theorem 3.1 ([5]). Let A be a complex Banach algebra with unit. If x ∈ A satisfies ∥x∥ < 1, then
e− x is invertible, and

(e− x)−1 = e+
∞∑

n=1
xn.

Theorem 3.2 ([5]). Let A be a complex Banach algebra with unit. If x ∈ A and ∥x∥ < 1, then e−x
is invertible, (e− x)−1 = e+∑∞

n=1(−1)nxn, and

∥(e+ x)−1 − e+ x∥ ≤ ∥x∥2

1−∥x∥ .

Theorem 3.3 ([5]). Let A be a complex Banach algebra with unit. ∥x− e∥ < 1, then x is invertible
and x−1 = e+∑∞

n=1(e− x)n.

Theorem 3.4. Let A be a complex Banach algebra with unit. If A−1 is an open subset of A.

Proof. Let x0 ∈ A−1. Let B(x0,ε) be an open ball with center x0 and radius ε.
Set ε= −1

∥x−1
0 ∥ > 0.

We will show that B(x0,ε)⊆ A−1. Let x ∈ B(x0,ε). Then

∥x− x0∥ < −1
∥x−1

0 ∥ .

Let y= x−1
0 x and z = e− y. Then

∥z∥ = ∥− z∥
= ∥y− e∥
= ∥x0

−1x− x0
−1x0∥

= ∥x0
−1(x− x0)∥

≤ ∥x0
−1∥∥x− x0∥

< ∥x0
−1∥ 1

∥x0−1∥ = 1.

Thus ∥z∥ < 1. So e− z is invertible in A (Theorem 3.1), and hence y= e− z ∈ A−1.
Now, we have x0, y ∈ A−1. So x0 y ∈ A−1 (Theorem 2.5). Therefore

x0 y= x0x0
−1x = ex = x ∈ A−1.

Hence A−1 is open.
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Corollary 3.5. Let A be a complex Banach’s algebra with unit. Then, the set of all non-reversible
elements is closed.

Proof. Since A−1 is open (Theorem 3.4), and the set of all non-reversible elements is complement
of A−1, so it closed.

Theorem 3.6 ([10]). Let A be a complex Banach algebra with unit e. Let x ∈ A−1 and y ∈ A such
that

∥x− y∥ < 1
∥x−1∥ .

Then, y ∈ A−1 and ∥x−1 − y−1∥ ≤ ∥x−1∥2 ∥x−y∥
1−∥x−1∥∥x−y∥ .

Proof. Let x ∈ A−1 and y ∈ A. Then

∥e− x−1 y∥ = ∥xx−1 − x−1 y∥
= ∥x−1(x− y)∥
≤ ∥x−1∥∥x− y∥ ≤ 1.

So x−1 y invertible (Theorem 3.3) and has an inverse in A say Z. Then

x−1 yz = e. (3.1)

Multiplying (3.1) on the left by, we have xx−1 yz = xe and so yz = x. We obtain yzx−1 = xx−1 = e.
Hence yzx−1 = e.
Again multiplying (3.1) on the right by x−1, we have

(x−1 yz)x−1 = ex−1 thus x−1(x−1 yz)= x−1.

It follows that

zx−1 y= 1
y

y= e.

Thus, it is the inverse of Theorem 3.3, this gives us

z =
∞∑

n=0
(e− x−1 y)n

=
∞∑

n=0
(x−1x− x−1 y)n

=
∞∑

n=0
(x−1(x− y))n.

We have

∥x−1 − y−1∥ = ∥x−1 − zx−1∥ = ∥x−1(e− z)∥
≤ ∥e− z∥∥x−1∥
≤ ∥x−1∥

∞∑
n=1

∥x−1∥n ∥x− y∥n

≤ ∥x−1∥
∞∑

n=1
(∥x−1∥∥x− y∥)n

= ∥x−1∥2∥x− y∥
1−∥x−1∥∥x− y∥ .
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Theorem 3.7. Let A be a complex Banach algebra with unit. Let x ∈ A−1 and a ∈ A such that
∥a∥ ≤ 1

2∥x−1∥−1. Then, x+a ∈ A−1.

Proof. Let x ∈ A−1, a ∈ A and ∥a∥ ≤ 1
2∥x−1∥−1.

Then, ∥x−1a∥ ≤ 1
2 .

Hence, ex−1a ∈ A−1, and so writing

x+a = x(ex−1a).

Now, we have x ∈ A−1 and e+ x−1a ∈ A−1. Thus x(ex−1a) ∈ A−1. Hence x+a ∈ A−1.

Theorem 3.8. Let A be a complex Banach algebra with unit. Let y ∈ A−1 such that ∥y−1∥ = 1
α

,
h ∈ A and ∥h∥ =β<α. Then, y+h ∈ A−1 and

∥(y+h)−1 − y−1 + y−1hy−1∥ ≤ β2

α2(α−β)
.

Proof. Let y ∈ A−1, h ∈ A. Then, ∥y−1h∥ ≤ β

α
< 1.

Hence e+ y−1h ∈ A−1 (Theorem 3.2).
Since y+h = x(e+ y−1h), so we have y+h ∈ A−1.
Then

(y+h)−1 = (y(e+ y−1h))−1

= (e+ y−1h)−1 y−1.

Now, we have

(y+h)−1 − y−1 + y−1hy−1 = [(e+ y−1h)−1 − e+ y−1h]x−1.

Therefore

∥(y+h)−1 − y−1 + y−1hy−1∥ = ∥[(e+ y−1h)−1 − e+ y−1h]y−1∥
≤ ∥(e+ y−1h)−1 − e+ y−1h∥∥y−1∥.

It follows from (Theorem 3.2) with y−1h in place of y:

∥(y+h)−1 − y−1 + y−1hy−1∥ ≤ ∥y−1h∥2

1−∥y−1h∥∥y−1∥

≤
β2

α2
1
α

1− β

α

≤ β2

α2(α−β)
.

Theorem 3.9. Let A be a complex Banach algebra with unit. Let y ∈ A and λ ∈ C such that
∥y∥ < |λ|. Then, y−λe ∈ A−1.

Proof. Let ∥y∥ < |λ|. Then, ∥y∥
|λ| < 1.

Thus, we obtain ∥y∥
|λ| < 1.

Then, it is reversible. Since −λ(e−λ−1 y)= y−λe, so y−λe is reversible.
Hence y−λe ∈ A−1.
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Theorem 3.10. Let A be a commutative Banach algebra with unit. Let a ∈ A. Then, the inversion
mapping a → a−1 is continuous in A.

Proof. Suppose xn ∈ A−1 and yn → a in A. will show that y−1
n → a−1 as n →∞. Let a ∈ A such

that

∥yn −a∥ ≤ 1
2∥yn −a∥ .

Then

∥y−1
n −a−1∥ = ∥y−1

n (a− yn)a−1∥
≤ ∥y−1

n ∥∥ a− yn∥∥a−1∥ (3.2)

≤ 1
2
∥y−1

n ∥.

Since ∥y−1
n ∥−∥a−1∥ ≤ ∥y−1

n −a−1∥.
Thus, ∥y−1

n ∥−∥a−1∥ ≤ 1
2∥y−1

n ∥.
It follows that ∥y−1

n ∥ ≤ 2∥a−1∥.
By (3.2), we can get

∥y−1
n −a−1∥ ≤ 2∥a−1∥2 ∥a− yn∥→ 0, n →∞.

Thus y−1
n → a−1.

Theorem 3.11. Let A be a commutative complex Banach algebra with unit. Let a ∈ A. Then, the
inversion mapping a → a−1 is a homomorphisms of A−1 to itself.

Proof. Clearly, the mapping a → a−1 is onto. Let a1,a2 ∈ A with a−1
1 = a−1

2 . Then, (a−1
1 )−1 =

(a−1
2 )−1 and so a1 = a2.

Then, a → a−1 is one-one.
We have a → a−1 is continuous too (Theorem 2.10), and the inverse map from A onto A is
continuous too.
Hence a → a−1 is a homomorphisms.

Theorem 3.12. Let A be a commutative complex Banach algebra with unit. Let (an) be a
sequence in A−1 such that an → a in A as n →∞. If there exists a positive integer such that
∥a−1

n ∥ ≤ M for all n ∈N, then a ∈ A−1 and a−1
n → a−1 as n →∞.

Proof. Let M > 0 and let an → a as n →∞. Then, (an) is a Cauchy sequence. Then, for each
ε> 0 there exists a positive N such that

∥an −am∥ < ε

M2 , for all n,m ∈N.

Therefore,

∥a−1
n −am

−1∥ = ∥a−1
n (an −am)am

−1∥
≤ ∥a−1

n ∥∥an −am∥∥am
−1∥

≤ M2 ε

M2 = ε.
Hence (a−1

n ) is Cauchy sequence in A. Since A is a Banach algebra, so a−1
n converges to an

element in A, say x.
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Then

x = lim
n→∞(a−1

n ).

So xa = lim
n→∞(a−1

n )(an)= e.

Hence a is invertible in A and x = a−1.
Thus a ∈ A−1 and a−1

n → a−1 as n →∞.

Theorem 3.13. Let A be a complex Banach algebra with unit. Let (an) be a boundary point of A.
Let yn ∈ A−1 such that yn → y in A as n →∞. Then, ∥y−1

n ∥→∞ (n →∞).

Proof. If the conclusion is false, then there exists M <∞ such that

∥y−1
n ∥ < M, for all n.

Let y be a boundary point of A and let yn → y (n →∞). Then, for each ε> 0, there exists N > 0
such that

∥yn − y∥ < ε (where n > N)

< 1
M

,

∥e− y−1
n y∥ = ∥y−1

n (yn − y)∥
≤ ∥y−1

n ∥∥yn − y∥

< M
1
M

= 1 .

Thus ∥e− y−1
n y∥ < 1. So y−1

n y ∈ A−1. Then

y= yn(y−1
n y) ∈ A−1.

We have y ∈ A−1 and y ∈ ∂(A).
It follows that A−1 ∩∂(A) ̸= ;.
This is contradicts to A−1 is open (Theorem 3.4).
Hence ∥y−1

n →∞∥ (n →∞).

Theorem 3.14. Let A be a complex Banach algebra with unit e = 1. Let (an) ⊆ A−1 be and
an → a (n →∞) in A. Then, there exists a sequence (bn)⊆ A with ∥bn∥ = 1 and bna → 0 (n →∞).

Proof. Set bn = a−1
n

∥a−1
n ∥ .

Then, ∥bn∥ = 1 and so (bn) is a bounded sequence.
Also, bnan = 1

∥a−1
n ∥ → 0.

We have bn(a−an)→ 0.
Adding, we obtain bna → 0 (n →∞).

Definition 3.1. Let A be a complex Banach algebra with unit. We define the exponential
function exp : A → A by

exp(y)=
∞∑

n=0

1
n!

yn (y ∈ A), and exp(0)= 1.
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Theorem 3.15. Let A be a commutative Banach algebra with unit e = 1. Let x, y ∈ A. Then
(i) exp(xy)= exp(x)exp(y),

(ii) exp(x) ∈ A−1 and (exp(x))−1 = exp(−x).

Proof. Let x, y ∈ A. Then

(i) exp(x+ y)=
∞∑

n=0

(x+ y)n

n!

=
∞∑

n=0

1
n!

n∑
j=0

(
n
j

)
xn− j y− j

=
∞∑

n=0

n∑
j=0

1
j!(n− j)!

xn− j y− j

=
∞∑
j=0

∞∑
n=0

1
j!n!

xn y j

= exp(x)exp(y).

(ii) Take y=−x in (i). Then

exp(0)= exp(x)exp(−x)

1= exp(x)exp(−x)

Thus (exp(x))−1 = exp(−x).

Theorem 3.16 ([2]). Let A be a complex Banach algebra with unit e = 1. Let x ∈ A such that
∥1− x∥ < 1. Then, there exists y ∈ A such that exp(y)= x.

Definition 3.2. Let A be a complex Banach algebra with unit. We define

exp(A)= {exp(x) : x ∈ A}.

It is clear that exp(A)⊂ A−1.

Theorem 3.17. Let A be a commutative Banach algebra with unit e = 1. Then, exp(A) is open in
A−1.

Proof. Let x ∈ exp(A). Then, a−1,

x = exp(h), h ∈ A.

Let y ∈ A with ∥x− y∥ < 1
∥x−1∥ .

Then,

∥1− x−1 y∥ = ∥x−1∥∥x− y∥

≤ ∥x−1∥ 1
∥x−1∥ = 1.

There exists z ∈ A such that x−1 y= exp(z). We have

y= exp(h)exp(z)

= exp(h+ z) ∈ exp(A).

Hence exp(A) is open in A−1.
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4. Spectral Radius and Spectroscopic of Banach’s Algebra
Definition 4.1. Let A be a complex Banach algebra with unit e. Then, spectrum of an element
y ∈ A, denoted by σA(y), is defined by

σA(y)= {λ ∈C : y−λe ∉ A−1}.

The complement of σA(y) in C is called the resolvent set of y. It is denoted by ρA(y). That is

ρA(y)= C

σA(y)
.

Remark 4.1. Let A be a Banach algebra with unit. It is clear that y is reversible in A if and
only if 0 ∉σA(y).

Example 4.1. Let A = M2×2 with complex entries.

Then, A = M2×2 is a complex Banach algebra with unit I =
[
1 0
0 1

]
.

Let x =
[
1 0
0 1

]
∈ M2×2.

By an elementary of matrix algebra it is known that x−λI has no inverse if and only if
det(x−λI)= 0.
Then

σA(x)=
{
λ ∈C : det

([
0 i
−i 0

]
−λ

[
1 0
0 1

])
= 0

}
=

{
λ ∈C : det

([
0 i
−i 0

]
−λ

[
λ 0
0 λ

])
= 0

}
=

{
λ ∈C : det

([
0 i
−i 0

]
−λ

[
λ 0
0 λ

])
= 0

}
=

{
λ ∈C : det

[−λ i
−i −λ

]
= 0

}
= {

λ ∈C :λ2 + i 2 = 0
}

= {−1,+1}.

Lemma 4.1. Let be a complex Banach algebra with unit e. Then

σA(0)= {0}.

Proof.

σA(0)= {λ ∈C : 0−λe ∉ A−1}

= {λ ∈C :−λe ∉ A−1}

= {λ ∈C :−λ ∉ A−1}

= {0}.

Theorem 4.2. Let A be a complex Banach algebra with unit e. Let y ∈ A. Then, σA(y) is
non-empty.
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Proof. Suppose for a contradiction that y ∈ A has an empty spectrum.
Define u(λ)= (y−λe)−1(λ ∈C).
Then, u is well-defined and a continuous mapping of C into A.
Let λ0 ∈C. Then

u(λ)−u(λ0)= (y−λe)−1 − (y−λ0e)−1

= u(λ)u(λ0)((y−λe)− (y−λ0e))

= (λ−λ0)eu(λ)u(λ0).

It follows that
u(λ)−u(λ0)

λ−λ0
= u(λ)u(λ0).

So

lim
λ−λ0

u(λ)−u(λ0)
λ−λ0

= (u(λ0))2. (4.1)

Let f be a continuous linear functional on A. We define a function h by

h(λ)= f (u(λ)), λ ∈C.

Since f and u are continuous, so is h.
Applying f to (4.1), we thus obtain

lim
λ→λ0

h(λ)−h(λ0)
λ−λ0

= f (u(λ0))2 .

Then, h is an entire function from C into C.
Since

u(λ)=−λ−1(e−λ−1x)−1

and

(e−λ−1x)−1 → e−1 = e as |λ|→∞,

we obtain

|h(λ)| = | f (u(λ))|
≤ ∥ f ∥∥u(λ)∥

= 1
|λ|∥ f ∥

∥∥∥∥(
e− 1

λ
x
)−1∥∥∥∥

→ 0 as |λ|→∞. (4.2)

This shows that h would be bounded on C.
By Liouville’s theorem, h is constant which is zero by (4.2). Then

h(λ)= f (u(λ))= 0.

It follows that. So

∥e∥ = ∥(y−λe)(e−λ−1 y)−1∥
= ∥(y−λe)u(λ)∥ = ∥0∥ = 0

and contradicts to ∥e∥ = 1.
Hence ρA(y) ̸= ;.
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Remark 4.2. If A be a real Banach algebra with unit, then it is possible that there exists
ρA(y) ∈ A such that σ(y)=;.

Example 4.2. Let A = M2×2 be a real Banach algebra with unit I =
[
1 0
0 1

]
.

Let y=
[
0 −1
1 0

]
∈ M2×2. Then

σA(y)=
{
λ ∈R : det

([
0 −1
1 0

]
−λ

[
1 0
0 1

])
= 0

}
=

{
λ ∈R : det

([− λ −1
1 −λ

])
= 0

}
= {λ ∈R :λ2 +1= 0}=;.

Lemma 4.3 ([2]). Let A be a complex Banach algebra with unit. Let y ∈ A. The resolvent set
ρA(y) of y is open in C.

Theorem 4.4. Let A be a Banach algebra with unit. Let y ∈ A. Then, ρA(y) is a compact subset
of C.

Proof. By the Heine-Borel Theorem, it is enough to show that σA(y) is bounded and closed. Let
λ ∈σA(y). Then, y−λe ∉ A−1.
By Theorem 2.9,

∥y∥ ≤ |λ|.
So

σA(y)⊆ {λ ∈C : |λ| ≤ ∥y∥}.

Thus σA(y) is bounded.
Since ρA(y) is open in C (Lemma 4.3), so σA(y) is closed.

Theorem 4.5. Let A be a complex Banach algebra with unit = 1. Let y ∈ A, n ∈N and λ ∈ C.
If λ ∈σA(y), then xn ∈σ(yn).

Proof. Let y ∈ A and let λ ∈C. Assume λn ∉σ(yn).
We have

(yn −λne)= (y−λe)(yn−1 +λyn−2 +·· ·+λn−1e). (4.3)

If multiply both sides of (4.3) by (yn −λne)−1, then (y−λe) is invertible in A. So λ ∉σ(y). This
completes the proof.

Theorem 4.6 ([12]). Let A be a complex Banach algebra with unit. Let B be a closed subalgebra
of A containing e. If y ∈ B, then σA(y)⊆σB(y), and

∂(σA(y))⊆ ∂(σB(y)).

Theorem 4.7 ([7]). Let A be a closed subalgebra of a complex Banach algebra B. Let y ∈ A.
If σA(y) has empty interior, then σA(y)=σB(y).
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Theorem 4.8 ([2]). Let A be a commutative complex Banach algebra with unit. Let x ∈ A. Then

σA(exp(y))= exp(σB(y)).

Remark 4.3. In fact, there are some non-zero element of complex Banach algebras which are
not invertible. For examples:

(i) Let A = M2×2 with complex entries. Then, M2×2 is a complex Banach algebra with unit

I =
[
1 0
0 1

]
.

Let x =
[

0 i
−i 0

]
∈ M2×2. Then, y is a non-zero element of M2×2 but x is not invertible.

(ii) Let A = C[0,1].
Then, C[0,1] is a complex Banach algebra with unit e = 1.
Define f by

f (x)=
{

0, 0≤ x ≤ 1
2 ,

x− 1
2 , 1

2 ≤ x ≤ 1.

Then, f is a non-zero element of C[0,1] but f is not invertible.

Proposition 4.9 ([1]). Let A be a complex Banach algebra with unit e in which each non-zero
element in A is invertible. Let y ∈ A. Then, there exists a unique λ ∈C such that y=λe.

Proof. Let y ∈ A. Then, σA(y) ̸= ; (Theorem 3.2). Hence there exists λ ∈σA(y) such that (y−λe)
is not invertible. So y−λe = 0. Thus y=λe. For uniqueness, let y=λe, x =µe (µ ∈C,λ ̸=µ). Let
α=λ−µ ̸= 0.
Then, αe = 0, and so e = 0 which is a contradiction.

Corollary 4.10. Let A be a complex Banach algebra with unit e in which each non-zero element
in A is invertible. Then, Ais commutative.

Proof. Let x, y ∈ A. Then, there exists unique λ,µ ∈C (λ ̸=µ), such that

x =λe, y=µe (Proposition 4.9).

Then

xy= (λe)(µe)= (λµ)e = (µλ)e = (yx).

Hence A is commutative.

Theorem 4.11 (Gelfand-Mazur, [6]). Let A be a complex Banach algebra with unit e in which
each non-zero element in A is invertible. Then, A is isomorphic to C.

Theorem 4.12 (Spectral Mapping Theorem, [6]). Let A be a complex Banach algebra with unit,
and y ∈ A. Let P be a polynomial function with complex coefficients in A. Then

P(σA(y))⊆ P(σB(y)).

Lemma 4.13. Let A be a commutative Banach algebra with unit. Let y ∈ A and P be a polynomial
function such that P(y)= 0. Then, P(σA(y))= {0}.
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Proof. Let y ∈ A. By spectral mapping theorem,

P(σA(y))=σA(P(y))

=σA(0)

= {0}. (Lemma 4.1)

Definition 4.2. Let A be a complex Banach algebra with unit e. Let xy ∈ A. The spectral radius
of y, denoted by rA(y), is defined by

rA(y)= sup{|λ| :λ ∈σA(y)}.

Remarks. (i) 0≤ rA(y)<∞, for all y.

(ii) If rA(y)= 0, then 0 ∈σA(y).

Example 4.3. Let A = M2×2 with complex entries.

Let y=
[

0 i
−i 0

]
∈ M2×2. Then, σA(y)= {−1,+1}.

So rA(y)= sup{|−1|, |1|}= 1.

Lemma 4.14. Let A be a complex Banach algebra with unit e. Let y ∈ A. Then

rA(y)≤ ∥y∥.

Proof. If |λ| ≥ ∥y∥, then ∥λ−1 y∥ < 1.
So e−λ−1 y is invertible (Theorem 3.1). Since

−λ(e−λ−1 y)= y−λe.

So y−λe is invertible in A. Thus λ ∉σA(y). So λ ∈σA(y) implies |λ| < ∥y∥.
Taking supremum over λ ∈σA(y), we obtain

sup
λ∈σA(x)

(|λ|)≤ ∥y∥.

Hence rA(y)≤ ∥y∥.

Lemma 4.15. Let A be a complex Banach algebra with unit e, and y ∈ A, n ∈N. Then

rA(yn)= rA(y)n.

Proof. Let y ∈ A. Then, rA(y)= sup{|λ| :λ ∈σA(y)}.
Therefore, rA(yn)= sup{|λ| :λ ∈σA(yn)}.
The spectral mapping theorem gives us:

σA(P(y))= P(σA(y))

= {p(λ) :λ ∈σA(y)}.

Let p(y)= yn. Then

σA(yn)= {λn :λ ∈σA(y)}.

It follows that

rA(yn)= sup{|λ|n :λ ∈σA(y)}

= rA(yn).
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Theorem 4.16 (Spectral Radius Formula, [6]). Let A be a complex Banach algebra with unit e,
and x ∈ A. Then

rA(y)= lim
n→∞∥yn∥ 1

n (where n = 1,2,3, . . . )

= inf
n≥1

(∥yn∥ 1
n ).

5. Conclusion
We presented the ideas of (reversible elements, spectral radius and reversible spectral).
We studied some of the basic properties of these ideas in the Banach algebra.
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