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1. Introduction
As we already know that the fixed point theory has many applications and was extended by
several authors from different views (see, e.g. [1–20]). In 2008, Harandi et al. [5] introduced the
best proximity pairs for upper semi continuous set-valued maps in hyper convex metric spaces.
In 2012, Samet et al. [18] introduced the notion of α-ψ-contractive type mappings. Denote with
Ψ the family of upper semi-continuous, strictly increasing functions ψ : [0,∞)→ [0,∞) such that
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{ψn(t)}n∈N converges to 0 as n →∞ and ψ(t)< t for all t > 0 where ψn is the n-th iterate of ψ
and ψ ∈Ψ [2]. In the years 2012 and 2013, Asl et al. ([14], [13]) introduced the notion of common
fixed point theorems for α∗-ψ-contractive multifunction. In 2015, Alsulami et al. [2] introduced
the notion of (α-ψ)-rational type contractive mappings. In 2015, Farajzadeh et al. [9] introduced
the on fixed point theorems for (ξ,α,η)-expansive mappings in complete metric spaces and [10]
introduced the some fixed Point Theorems for Generalized α-η-ψ-Geraghty contractive type
mappings in partial b-metric spaces. The aim of this paper is to introduce the notion of some
Fixed points of α∗-ψ-common rational type contractive order closed multi-valued mappings on
generalized metric spaces with application to fractional integral equations.

2. Preliminaries
We list some fundamental definitions. Let 2X denote the family of all nonempty subsets of X .

Definition 2.1 ([6]). Let X be a nonempty set and d : X × X → [0,∞) satisfy the following
conditions, for all x, y ∈ X and all distinct u,v ∈ X each of which is different from x and y:

(GMS1) d(x, y)= 0 if and if x = y,

(GMS2) d(x, y)= d(y, x),

(GMS3) d(x, y)≤ d(x,u)+d(u,v)+d(v, y).

Then the map d is called a generalized metric and abbreviated as GM. Here, the pair (X ,d) is
called a generalized metric space and abbreviated as GMS.

In the above definition, if d satisfies only (GMS1) and (GMS2), then it is called a semi-metric
(see, e.g. [19]).

A sequence {xn} in a GMS (X ,d) is GMS convergent to a limit x if and only if d(xn, x)→ 0 as
n →∞.

A sequence {xn} in a GMS (X ,d) is GMS Cauchy if and if for every ε > 0 there exists a
positive integer N(ε) such that d(xn, xm)< ε, for all n > m > N(ε).

A GMS (X ,d) is called complete if every GMS Cauchy sequence in X is GMS convergent.
A mapping T : (X ,d) → (X ,d) is continuous if for any sequence {xn} in X such that

d(xn, x)→ 0 as n →∞, we have d(Txn,Tx)→ 0 as n →∞.
The following assumption was suggested by Wilson [19] to replace the triangle inequality

with the weakened condition.

(W) For each pair of (distinct) points u,v there is number ru,v > 0 such that for every z ∈ X ,
ru,v < d(u, z)+d(z,v).

Proposition 2.1 ([17]). In a semi-metric space, the assumption (W) is equivalent to the assertion
that the limits are unique.

Proposition 2.2 ([17]). Suppose that {xn} is a Cauchy sequence in a GMS (X ,d) with

lim
n→∞d(xn,u)= 0, ∃ u ∈ X .
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Then lim
n→∞d(xn, z) = d(u, z), ∀ z ∈ X . In particular, the sequence {xn} dose not converge to z if

z 6= u.

Definition 2.2 ([13]). Let (X ,d) be a GMS and T,S : X → 2X with given set-valued, α :
X × X → [0,+∞), α∗ : 2X ×2X → [0,+∞), α∗(A,B) = inf{α(a,b) : a ∈ A,b ∈ B}, ψ ∈Ψ, D(s,Ts) =
inf{d(s, z)/z ∈ Ts}, H is the Hausdorff metric, and let

M(Ax,By)=max
{

d(x, y),D(x, Ax),D(y,By),
D(x, Ax)D(y,By)

1+d(x, y)
,
D(x, Ax)D(y,By)

1+H(Ax,By)

}
,

H(Ax,By)=max
{

sup
a∈Ax

D(a,By), sup
b∈By

D(Ax,b)
}
. (1)

One says that T,S are α∗-ψ-common rational type contractive set-valued mappings whenever

α∗(Ax,By)H(Ax,By)≤ψ(M(Ax,By)), A,B = T or S ∀ x, y ∈ X . (2)

Definition 2.3 ([13]). Let T,S : X → 2X and α : X × X → [0,+∞). One says that T,S are an
α∗-common admissible if α(x, y)≥ 1⇒α∗(Ax,By)≥ 1, A,B = T or S and for all x, y ∈ X .

Definition 2.4. A subset B ⊆ X is said to be an approximation if for each given y ∈ X , there
exists z ∈ B such that D(B, y)= d(z, y).

Definition 2.5. A set-valued mapping T : X → 2X is said to have approximate values in X if
Tx is an approximation for each x ∈ X .

Definition 2.6 ([11]). A set-valued operator T : X → 2X is called order closed if for monotone
sequences xn ∈ X and yn ∈ Txn, with lim

n→∞d(xn, x)= 0 and lim
n→∞d(yn, y)= 0 implies y ∈ Tx.

Definition 2.7. Let (X ,d) be a metric space. If T : X → 2X is a set-valued mapping, then x ∈ X
is called fixed point for T if and only if x ∈ F(x), the set

Fix(T) := {x ∈ X | x ∈ Tx}

is called the fixed point set of T .

Throughout this paper, we always assume that all set-valued operators have approximate
values. We have the following result.

Finally, we should emphasize that throughout this paper we suppose that all set-valued
mappings on a metric space (X ,d) have closed values.

3. Main Results
Now, we are ready to state and prove our main results. Fixed point theorems for order closed
set-valued mappings.

Lemma 3.1. Let (X ,d) be a GMS. Suppose that T,S : X → 2X are α∗-ψ-common rational type
contractive set-valued mappings satisfies the following conditions:

(i) T,S are α∗-common admissible;
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(ii) there exists x0 ∈ X such that

α∗({x0},Tx0)≥ 1 or α∗(Tx0, {x0})≥ 1.

Then Fix(T)=Fix(S).

Proof. We first show that any fixed point of T is also a fixed point of S and conversely. Since
Fix(T) 6= Fix(S), we may assume there exists x∗ ∈ X such that x∗ ∈ Fix(T), but x∗ ∉ Fix(S),
since D(x∗,Sx∗) > 0. Let x0 ∈ X such that α∗({x0},Tx0) ≥ 1. Define the sequence {xn} in X by
x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈N0. If xn0 = xn0+1 for some n0 > 1, then x∗ = xn0 are
a common fixed point for T,S. So, we can assume that x2n ∉ Tx2n and x2n+1 ∉ Sx2n+1 for all
n ∈N0. Since T,S are α∗-common admissible, we have

α(x0, x1)≥α∗({x0},Tx0)≥ 1⇒α∗(Tx0,Sx1)≥ 1;

α(x1, x2)≥α∗(Tx0,Sx1)≥ 1⇒α∗(Sx1,Tx2)≥ 1;

α(x2, x3)≥α∗(Sx1,Tx2)≥ 1⇒α∗(Tx2,Sx3)≥ 1 .

Inductively, we have

α(x2n, x2n+1)≥ 1⇒α∗(Tx2n,Sx2n+1)≥ 1

and

α(x2n+1, x2n+2)≥ 1⇒α∗(Sx2n+1,Tx2n+2)≥ 1

for all n ∈N0. We obtain

M(Tx∗,Sx∗)=max
{

d(x∗, x∗),D(x∗,Tx∗),D(x∗,Sx∗),
D(x∗,Tx∗)D(x∗,Sx∗)

1+d(x∗, x∗)
,

D(x∗,Tx∗)D(x∗,Sx∗)
1+H(Tx∗,Sx∗)

}
= D(x∗,Sx∗) (3)

and

D(x∗,Sx∗)≤ H(Tx∗,Sx∗)≤α∗(Tx∗,Sx∗)H(Tx∗,Sx∗)≤ψ(M(Tx∗,Sx∗))

≤ψ(D(x∗,Sx∗))< D(x∗,Sx∗). (4)

This contradiction establishes that Fix(T)⊆Fix(S). A similar argument establishes the reverse
containment, and therefore Fix(T)=Fix(S).

Theorem 3.2. Let (X ,d) be a complete GMS, T,S : X → 2X be a α∗-ψ-common rational type
contractive set-valued mappings and satisfies the following conditions:

(i) T,S are α∗-common admissible;

(ii) there exists x0 ∈ X such that α∗({x0},Tx0)≥ 1,α∗({x0},STx0)≥ 1;

(iii) T or S is order closed.

Then T,S have common fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T,S.
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Proof. By Lemma 3.1, we have Fix(T)=Fix(S). Since T,S are α∗-common admissible, we have

α(x0, x1)≥α∗({x0},Tx0)≥ 1⇒α∗(Tx0,Sx1)≥ 1; then

α(x1, x2)≥α∗(Tx0,Sx1)≥ 1⇒α∗(Sx1,Tx2)≥ 1 . (5)

Inductively, we have α(xn, xn+1)≥ 1, ∀ n ∈N0. By similar arguments, since α∗({x0},STx0)≥ 1,
we have

α(x0, x2)≥α∗({x0},STx0)≥ 1⇒α∗(Tx0,Tx2)≥ 1; then

α(x1, x3)≥α∗(Tx0,Tx2)≥ 1⇒α∗(Sx1,Sx3)≥ 1. (6)

Inductively, we have α(xn, xn+2) ≥ 1, ∀ n ∈ N0. Consider equations (1), (2) with x = x2n+1 and
y= x2n+2. Clearly, we have

d(x2n+1, x2n+2)≤ H(Tx2n,Sx2n+1)≤α∗(Tx2n,Sx2n+1)H(Tx2n,Sx2n+1)

≤ψ(M(Tx2n,Sx2n+1)), (7)

where

M(Tx2n,Sx2n+1)=max
{

d(x2n, x2n+1),D(x2n,Tx2n),D(x2n+1,Sx2n+1),

D(x2n,Tx2n)D(x2n+1,Sx2n+1)
1+d(x2n, x2n+1)

,
D(x2n,Tx2n)D(x2n+1,Sx2n+1)

1+D(Tx2n,Sx2n+1)

}
=max

{
d(x2n, x2n+1),d(x2n, x2n+1),d(x2n+1, x2n+2),

d(x2n, x2n+1)d(x2n+1, x2n+2)
1+d(x2n, x2n+1)

,
d(x2n, x2n+1)d(x2n+1, x2n+2)

1+d(x2n+1, x2n+2)

}
=max{d(x2n, x2n+1),d(x2n+1, x2n+2)}, (8)

since
d(x2n, x2n+1)d(x2n+1, x2n+2)

1+d(x2n, x2n+1)
= d(x2n, x2n+1)

1+d(x2n, x2n+1)
×d(x2n+1, x2n+2)

≤ d(x2n+1, x2n+2) (9)

and
d(x2n, x2n+1)d(x2n+1, x2n+2)

1+d(x2n+1, x2n+2)
= d(x2n+1, x2n+2)

1+d(x2n+1, x2n+2)
×d(x2n, x2n+1)

≤ d(x2n, x2n+1). (10)

If

max{d(x2n, x2n+1),d(x2n+1, x2n+2)}= d(x2n+1, x2n+2).

So, in general,

d(x2n+1, x2n+2)≤ψ(d(x2n+1, x2n+2))< d(x2n+1, x2n+2),

which is contradiction since d(x2n+1, x2n+2)> 0 thus

d(x2n+1, x2n+2)≤ψ(d(x2n, x2n+1)).
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Similarly,

d(x2n, x2n+1)≤ψ(d(x2n−1, x2n)).

We have

d(xn+1, xn+2)≤ψ(d(xn, xn+1))≤ . . .≤ψn(d(x0, x1)), (11)

for all n ∈ N . From the property of ψ, we conclude that d(xn, xn+1) < d(xn−1, xn), for all n ∈ N ,
it is clear that lim

n→∞d(xn+1, xn+2) = 0. Consider equation (1), (2) with x = x2n−1 and y = x2n+1.
Clearly, we have

d(x2n, x2n+2)≤ H(Sx2n−1,Sx2n+1)≤α∗(Sx2n−1,Sx2n+1)H(Sx2n−1,Sx2n+1)

≤ψ(M(Sx2n−1,Sx2n+1)), (12)

where

M(Sx2n−1,Sx2n+1)=max
{

d(x2n−1, x2n+1),D(x2n−1,Sx2n−1),D(x2n+1,Sx2n+1),

D(x2n−1,Sx2n−1)D(x2n+1,Sx2n+1)
1+d(x2n−1, x2n+1)

,

D(x2n−1,Sx2n−1)D(x2n+1,Sx2n+1)
1+H(Sx2n−1,Sx2n+1)

}
=max

{
d(x2n−1, x2n+1),d(x2n−1, x2n),d(x2n+1, x2n+2),

d(x2n−1, x2n)d(x2n+1, x2n+2)
1+d(x2n−1, x2n+1)

,
d(x2n−1, x2n)d(x2n+1, x2n+2)

1+d(x2n, x2n+2)

}
. (13)

From (12), (13) we have d(x2n+1, x2n+2) < d(x2n−1, x2n). Define a2n = d(x2n, x2n+2) and b2n =
d(x2n, x2n+1). Then

M(Sx2n−1,Sx2n+1)=max
{

a2n−1,b2n−1,
b2n−1b2n+1

1+a2n−1
,
b2n−1b2n+1

1+a2n

}
. (14)

If M(Sx2n−1,Sx2n+1)= b2n−1, or b2n−1b2n+1
1+a2n−1

or b2n−1b2n+1
1+a2n

then taking limsup as n →∞ in (13) and
using (14) and upper semi-continuity of ψ, we get

0≤ limsup
n→∞

a2n ≤ limsup
n→∞

ψ(M(Sx2n−1,Sx2n+1))

=ψ
(
limsup

n→∞
M(Sx2n−1,Sx2n+1)

)
=ψ(0)= 0 (15)

and hence, lim
n→∞a2n= lim

n→∞d(x2n, x2n+2)= 0. If M(Sx2n−1,Sx2n+1)=a2n−1, then (15) implies a2n≤
ψ(a2n−1)< a2n−1 and similarly a2n+1 ≤ψ(a2n)< a2n. By induction, we get an ≤ψ(an−1)< an−1,
due to the property of ψ. In other words, the sequence an is positive monotone decreasing, and
hence, it converges to some t ≥ 0. Assume that t > 0. Now, by (15), we get

t = limsup
n→∞

an = limsup
n→∞

ψ(an)=ψ
(
limsup

n→∞
an−1

)
=ψ(t)< t (16)

which is a contradiction. Therefor, lim
n→∞an = lim

n→∞d(xn, xn+2) = 0. Now, we shall prove that
xn 6= xm for all n 6= m. Assume on the contrary that xn = xm for some m,n ∈ N with n 6= m. Since
d(xp, xp+1)> 0 for each p ∈N, without loss of generality, we may assume that m > n+1, m = 2k
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and n = 2l for k, l ∈ N. Substitute again x = x2l = x2k and y = x2l+1 = x2k+1 in (1), (2) which
yields

d(x2l , x2l+1)= d(x2k, x2k+1)

≤ H(Sx2k−1,Tx2k)

≤α∗(Sx2k−1,Tx2k)H(Sx2k−1,Tx2k)

≤ψ(M(Sx2k−1,Tx2k)), (17)

where

M(Sx2k−1,Tx2k)=max
{

d(x2k−1, x2k),D(x2k−1,Sx2k−1),D(x2k,Tx2k),

D(x2k−1,Sx2k−1)D(x2k,Tx2k)
1+d(x2k−1, x2k)

,
D(x2k−1,Sx2k−1)D(x2k,Tx2k)

1+H(Sx2k−1,Tx2k)

}
=max

{
d(x2k−1, x2k),d(x2k−1, x2k),d(x2k, x2k+1),

d(x2k−1, x2k)d(x2k, x2k+1)
1+d(x2k−1, x2k)

,
d(x2k−1, x2k)d(x2k, x2k+1)

1+d(x2k, x2k+1)

}
=max{d(x2k−1, x2k),d(x2k, x2k+1)}. (18)

If M(Sx2k−1,Tx2k)= d(x2k−1, x2k), then from (22), implies

d(x2l , x2l+1)≤ψ(d(x2k−1, x2k))≤ψ2k−2l(d(x2l , x2l+1)). (19)

If on the other hand M(Sx2k−1,Tx2k)= d(x2k, x2k+1), then from (17) we have

d(x2l , x2l+1)≤ψ(d(x2k, x2k+1))≤ψ2k−2l+1(d(x2l , x2l+1)). (20)

Using the property of ψ, the two inequalities (19) and (20) imply d(x2l , x2l+1) < d(x2l , x2l+1),
which is impossible. Now, we shall prove that {xn} is a Cauchy sequence, that is,

lim
n→∞d(xn, xn+k)= 0, for all k ∈ N.

We have already proved the cases for k = 1 and k = 2 in (17) and (18), respectively. Take arbitrary
k ≥ 3. We discuss two cases.

Case 1. Suppose that k = 2m+1, where m ≥ 1. Using the quadrilateral inequality (GMS3), we
have

d(xn, xn+1)≤ψ(d(xn−1, xn))≤ . . .≤ψn(d(x0, x1)), for all n ∈N0 (21)

and

d(xn, xn+2m+1)≤ d(xn, xn+1)+d(xn, xn+2)+ . . .+d(xn+2m, xn+2m+1)

≤
n+2m∑
p=n

ψp(d(x0, x1))

≤
+∞∑
p=n

ψp(d(x0, x1))→ 0 (22)

as n →∞.
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Case 2. Suppose that k = 2m, where m ≥ 2. Using the quadrilateral inequality (GMS3), we have

d(xn, xn+2m)≤ d(xn, xn+2)+d(xn+2, xn+3)+ . . .+d(xn+2m−1, xn+2m)

≤ d(xn, xn+2)+
n+2m−1∑
p=n+2

ψp( f (d(x0, x1)))

≤ d(xn, xn+2)+
+∞∑
p=n

ψp( f (d(x0, x1)))→ 0 (23)

as n →∞. In both of the abave cases, we have

lim
n→∞d(xn, xn+k)= 0,

for all k ≥ 3. Fix ε> 0 and let n(ε) ∈N0 such that
∞∑

n=n(ε)
ψn( f (d(x0, x1)))< ε. (24)

Let n,m ∈N0 with m > n > n(ε). Using the quadrilateral inequality (GMS3), we obtain

d(xn, xm)≤ d(xn, xn+1)+d(xn+1, xn+2)+d(xn+2, xm)

≤ d(xn, xn+1)+d(xn+1, xn+2)+d(xn+2, xn+3)+d(xn+3, xn+4)+d(xn+4, xm)

≤ d(xn, xn+1)+ . . .+d(xm−1, xm)

=
m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

ψk(d(x0, x1))

≤
∞∑

n=n(ε)
ψn(d(x0, x1))< ε. (25)

Thus we proved that {xn} is a Cauchy sequence in the metric space (X ,d). Since (X ,d) is
complete metric space, there exists x∗ ∈ X such that lim

n→∞d(xn, x∗)= 0. From the order closed
of T , it follows that x2n+1 ∈ Tx2n → Tx∗ as lim

n→∞D(x2n+1,Tx∗) = 0, due to Proposition 2.1, we
conclude that x∗ ∈ Tx∗. Similarly if S is order closed, we have x∗ ∈ Sx∗.

Corollary 3.3. Let (X ,d) be a complete GMS, T : X → 2X be a α∗-ψ-rational type contractive
set-valued mappings and satisfies the following conditions:

(i) T is α∗-admissible;

(ii) there exists x0 ∈ X such that α∗({x0},Tx0)≥ 1, α∗({x0},T2x0)≥ 1;

(iii) T is order closed.

Then T has fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn} with xn+1 ∈ Txn

converges to the fixed point of T .

Example 3.1. Let X be a finite set defined as X = {1,2,3,4}. Define d : X × X → [0,∞) as:

d(1,1)= d(2,2)= d(3,3)= d(4,4)= 0,

d(1,2)= d(2,1)= 3,
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d(2,3)= d(3,2)= d(1,3)= d(3,1)= 1, and

d(1,4)= d(4,1)= d(2,4)= d(4,2)= d(3,4)= d(4,3)= 1
2

.

The function d is not a metric on X . Indeed, note

3= d(1,2)≥ d(1,3)= d(3,2)= 1+1= 2,

that is, the triangle inequality is not satisfied. However, d is a generalized metric on
X and moreover (X ,d) is a complete generalized metric space. Define T,S : X → 2X as:
T1 = T2 = T3 = {2,4}, T4 = {1,3} and S1 = S2 = S4 = {2,3}, S3 = {1,2}, α : X × X → [0,+∞),
α∗ = infα as α(x, y)= 1, ψ(t)= 2

3 t. Clearly, T , S satisfies the conditions of Theorem 3.2 and has
a common fixed point x = 2.

Now, we prove the following result for self-maps.

Corollary 3.4. Let (X ,d) be a complete GMS, T,S : X → X be a α-ψ-common rational type
contractive mappings and satisfies the following conditions:

(i) T,S are α-common admissible;

(ii) there exists x0 ∈ X such that α(x0,Tx0)≥ 1,α(x0,STx0)≥ 1;

(iii) T or S is continuous.

Then T,S have common fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn}
with x2n+1 = Tx2n and x2n+2 = Sx2n+1 converges to the common fixed point of T,S.

Corollary 3.5 ([2]). Let (X ,d) be a complete GMS, T : X → X be a α-ψ-rational type contractive
mappings and satisfies the following conditions:

(i) T are α-admissible;

(ii) there exists x0 ∈ X such that α(x0,Tx0)≥ 1, α(x0,T2x0)≥ 1;

(iii) T is continuous.

Then T has fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn} with xn+1 = Txn

converges to the fixed point of T .

4. Fixed Point Theorems for Weakly Increasing and Order Closed
Set-Valued Mappings

In the following we provide set-valued versions of the preceding theorem. The results are
related to those in ([11]).

Let X be a topological space and ¹ be a partial order on X .

Definition 4.1 ([11]). Let A,B be two nonempty subsets of X , the relations between A and B
are definers follows:

(r1) If for every a ∈ A, there exists b ∈ B such that a ¹ b, then A ≺1 B.

(r2) If for every b ∈ B there exists a ∈ A, such that a ¹ b, then A ≺2 B.

(r3) If A ≺1 B and A ≺2 B, then A ≺ B.
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Definition 4.2 ([7], [8]). Let (X ,¹) be a partially ordered set. Two mappings f , g : X → X are
said to be weakly increasing if f x ¹ gf x and gx ¹ f gx hold for all x ∈ X .

Note that, two weakly increasing mappings need not be nondecreasing.

Example 4.3. Let X = R+ endowed with usual ordering. Let f , g : X → X defined by

f x =
{

x if 0≤ x ≤ 1,
0 if 1< x <∞ and gx =

{p
x if 0≤ x ≤ 1,

0 if 1< x <∞
then it is obvious that f x ≤ gf x and gx ≤ f gx for all x ∈ X . Thus f and g are weakly increasing
mappings. Note that both f and g are not nondecreasing.

Definition 4.4. ([3]) Let (X ,¹) be a partially ordered set. Two mapping F,G : X → 2X are said
to be weakly increasing with respect to ≺1 if for any x ∈ X we have Fx ≺1 G y for all y ∈ Fx and
Gx ≺1 F y for all y ∈ Gx. Similarly, two maps F,G : X → 2X are said to be weakly increasing
with respect to ≺2 if for any x ∈ X we have G y≺2 Fx for all y ∈ Fx and F y≺2 Gx for all y ∈Gx.

Now, we give some examples.

Example 4.5. ([3]) Let X = [1,∞) and ≤ be usual order on X . Consider two mappings
F,G : X → 2X defined by Fx = [1, x2] and Gx = [1,2x] for all x ∈ X . Then the pair of mappings F
and G are weakly increasing with respect to ≺2 but not ≺1 . Indeed, since

G y= [1,2y]≺2 [1, x2]= Fx for all y ∈ Fx

and

F y= [1, y2]≺2 [1,2x]=Gx for all y ∈Gx

so F and G are weakly increasing with respect to ≺2 but F2= [1,4]Â1 [1,2]=G1 for 1 ∈ F2, so
F and G are not weakly increasing with respect to ≺1 .

Example 4.6. ([3]) Let X = [1,∞) and ≤ be usual order on X . Consider two mappings
F,G : X → 2X defined by Fx = [0,1] and Gx = [x,1] for all x ∈ X . Then the pair of mappings F
and G are weakly increasing with respect to ≺1 but not ≺2 . Indeed, since

Fx = [0,1]≺1 [y,1]=G y for all y ∈ Fx

and

Gx = [x,1]≺1 [0,1]= F y for all y ∈Gx

so F and G are weakly increasing with respect to ≺1 but G1 = 1 Â2 0,1 = F1 for 1 ∈ F1, so F
and G are not weakly increasing with respect to ≺2 .

Theorem 4.1. Let (X ,¹,d) be a partially ordered complete GMS. Suppose that T,S : X → 2X

are set-valued mappings and satisfies the following conditions:

(i) H(Ax,By)≤ψ(M(Ax,By)) for all A,B = T or S;

(ii) T and S be a weakly increasing pair on X with respect to ≺1;
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(iii) there exists x0 ∈ X such that {x0}≺1 Tx0 and {x0}≺1 STx0;

(iv) T or S is order closed.

Then T,S have common fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T,S.

Proof. Define the sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If
xn = xn+1 for some n ∈ N0, then x∗ = xn is a common fixed point for T,S. Using that the pair of
set-valued mappings T and S is weakly increasing and by define α : X × X → [o,+∞)

α(x, y)=
{

1 if x ¹ y
0 if x Â y

It can be easily shown that the sequence xn is nondecreasing with respect to ¹ i.e; and

α∗({x0},Tx0)≥ 1⇒∃x1 ∈ Tx0, such that α(x0, x1)≥ 1⇒ x0 ¹ x1.

Now since T and S are weakly increasing with respect to ≺1, we have x1 ∈ Tx0 ≺1 Sx1. Thus
there exist some x2 ∈ Sx1 such that x1 ¹ x2. Again since T and S are weakly increasing with
respect to ≺1, we have x2 ∈ Sx1 ≺1 Tx2. Thus there exist some x3 ∈ Tx2 such that x2 ¹ x3.
Continue this process, we will get a nondecreasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Tx2n

and x2n+2 ∈ Sx2n=1, n = 0,1,2,3, · · · We get

x0 ¹ x1 ¹ x2 ¹ ·· · ¹ x2n ¹ x2n+1 ¹ x2n+2 ¹ ·· ·
In particular xn, xn+k are comparable for all k ∈ N . α(xn, xn+k) ≥ 1 for all n ∈ N0 and by (4)
we have lim

n→∞d(xn, xn+k) = 0. Following the proof of Theorem 3.2, we know that {xn} is a
Cauchy sequence in the partially ordered complete GMS (X ,¹,d). There exists x∗ ∈ X such
that lim

n→+∞d(xn, x∗)= 0. In the case, suppose that, for example, T is a order closed set-valued
mappings then we have that lim

n→+∞d(Txn,Tx∗)= 0, which (taking n even) implies that x∗ ∈ Tx∗.
The proof is similar when S is a order closed set-valued mappings. Then x∗ is a common fixed
point of T,S.

Theorem 4.2. Let (X ,¹,d) be a partially ordered complete GMS. Suppose that T,S : X → 2X

are set-valued mappings and satisfies the following conditions:
(i) H(Ax,By)≤ψ(M(Ax,By)) for all A,B = T or S;

(ii) T and S be a weakly increasing pair on X with respect to ≺2;

(iii) there exists x0 ∈ X such that Tx0 ≺2 {x0} and STx0 ≺2 {x0};

(iv) T or S is order closed.
Then T,S have common fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T,S.

Proof. Define the sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If
xn = xn+1 for some n ∈ N0, then x∗ = xn is a common fixed point for T,S. Using that the pair of
set-valued mappings T and S is weakly increasing and by define

α(x, y)=
{

1 if x ¹ y
0 if x Â y
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It can be easily shown that the sequence xn is non increasing with respect to ¹ i.e; and

α∗(Tx0, {x0})≥ 1⇒∃x1 ∈ Tx0, such that α(x1, x0)≥ 1⇒ x1 ¹ x0.

Now since T and S are weakly increasing with respect to ≺2, we have Sx1 ≺2 Tx0. Thus there
exist some x2 ∈ Sx1 such that x2 ¹ x1. Again since T and S are weakly increasing with respect to
≺2, we have Tx2 ¹2 Sx1. Thus there exist some x3 ∈ Tx2 such that x3 ¹ x2. Continue this process,
we will get a non increasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1,
n = 0,1,2,3, · · · . We get

x0 º x1 º x2 º ·· · º x2n º x2n+1 º x2n+2 º ·· ·
In particular xn+k, xn are comparable for all k ∈ N , α(xn+k, xn) ≥ 1 for all n ∈ N0 and by (4)
we have lim

n→∞d(xn+k, xn) = 0. Following the proof of Theorem 3.2, we know that {xn} is a
Cauchy sequence in the partially ordered complete GMS (X ,¹,d). There exists x∗ ∈ X such
that lim

n→+∞d(xn, x∗)= 0. In the case, suppose that, for example, T is a order closed multi-valued
mappings then we have that lim

n→+∞d(Txn,Tx∗)= 0, which (taking n even) implies that x∗ ∈ Tx∗.
The proof is similar when S is a order closed set-valued mappings. Then x∗ is a common fixed
point of T,S.

Corollary 4.3. Let (X ,¹,d) be a partially ordered complete GMS. Suppose that T : X → 2X is
set-valued mapping and satisfies the following conditions:

(i) H(Tx,T y)≤ψ(M(Tx,T y));

(ii) T and ix be a weakly increasing pair on X with respect to ≺1 or ≺2;

(iii) there exists x0 ∈ X such that{x0}≺1 Tx0 and {x0}≺1 T2x0, or

(iii)∗Tx0 ≺2 {x0} and T2x0}≺2 {x0};

(iv) T is order closed.
Then T has fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn} with xn+1 ∈ Txn

converges to the fixed point of T .

Now, we prove the following result for self-maps.

Corollary 4.4. Let (X ,¹,d) be a partially ordered complete GMS. Suppose that T,S : X → X
are self-mappings and satisfies the following conditions:

(i) d(Ax,By)≤ψ(M(Ax,By)) for all A,B = T or S;

(ii) T and S be a weakly increasing pair on X with respect to ≺1 or ≺2;

(iii) there exists x0 ∈ X such that x0 ≺1 Tx0 and x0 ≺1 STx0 or

(iii)∗Tx0 ≺2 x0 and STx0 ≺2 x0;

(iv) T or S is continuous.
Then T,S have common fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn}
with x2n+1 = Tx2n and x2n+2 = Sx2n+1 converges to the common fixed point of T,S.

Corollary 4.5. Let (X ,¹,d) be a partially ordered complete GMS. Suppose that T : X → X is
self-mapping and satisfies the following conditions:
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(i) d(Tx,T y)≤ψ(M(Tx,T y));

(ii) T and ix be a weakly increasing pair on X with respect to ≺1 or ≺2;

(iii) there exists x0 ∈ X such that x0 ≺1 Tx0 and x0 ≺1 T2x0 or

(iii)∗Tx0 ≺2 x0 and T2x0 ≺2 x0;

(iv) T is continuous.
Then T has fixed point x∗ ∈ X . Further, for each x0 ∈ X , the iterated sequence {xn} with xn+1 = Txn

converges to the fixed point of T .

5. Coupled Fixed Point Theorem
Recall that a function η : R+ → R+ is said to be super-additive if η(s)+η(t) ≤ η(s+ t) for all
s, t ∈ R+.

It is well-known that every nondecreasing, convex function η : R+ → R+ with η(0) = 0 is
super-additive (cf. [4]).

Definition 5.1 ([12]). Let F : X × X → X be a mapping, where (X ,d) is a metric space. We say
that (x, y) ∈ X × X is a coupled fixed point of F if

x = F(x, y), y= F(y, x).

Note that if (x, y) is a coupled fixed point of F then (y, x) are coupled fixed points of F too.
Our results are based on the following simple lemma.

Lemma 5.1 ([18]). Let F : X×X → X be a given mapping. Define the mapping TF : X×X → X×X
by TF (x, y)= (F(x, y),F(y, x)) for all (x, y) ∈ X ×X . Then, (x, y) is a coupled fixed point of F if and
only if (x, y) is a fixed point of TF .

Theorem 5.2. Let (X ,d) be a complete GMS and F : X × X → X be a given continuous mapping.
Assume there are exist nondecreasing functions ψi : [0,+∞) → [0,+∞), i = 1,2, such that
ψ=ψ1+ψ2 is convex, ψ(0)= 0, lim

n→+∞ψ
n(t)= 0 for all t > 0, a function α : X2×X2 → [0,+∞) and

satisfies the following conditions:
(i) for all (x, y), (u,v) ∈ X × X ,

α((x, y), (u,v))d(F(x, y),F(u,v))≤ψ1(d(x,u))+ψ2(d(y,v));

(ii) if for all (x, y), (u,v) ∈ X × X ,

α((x, y), (u,v))≥ 1⇒α(TF (x, y),TF (u,v))≥ 1;

(iii) there exists (x0, y0) ∈ X × X such that

α((x0, y0),TF (x0, y0))≥ 1 and α((x0, y0),T2
F (x0, y0))≥ 1; or

(iii)∗ there exists (x0, y0) ∈ X × X such that

α(TF (x0, y0), (x0, y0))≥ 1 and α(T2
F (x0, y0), (x0, y0))≥ 1.

Then, F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X × X such that x∗ = F(x∗, y∗)
and y∗ = F(y∗, x∗).
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Proof. The idea consists in transporting the problem to the complete GMS (Y ,δ), where
Y = X × X and δ((x, y), (u,v)) = d(x,u)+d(y,v), for all (x, y), (u,v) ∈ X × X . From condition (i),
we have

α((x, y), (u,v))d(F(x, y),F(u,v))≤ψ1(d(x,u))+ψ2(d(y,v)) (26)

and

α((v,u), (y, x))d(F(v,u),F(y, x))≤ψ1(d(v, y))+ψ2(d(u, x)) (27)

for all x, y,u,v ∈ X . Adding (26) to (27), we get (note that ψ is super-additive)

β(ξ,η)δ(TFξ,TFη)≤ψ1(d(ξ1,η1))+ψ2(d(ξ2,η2))+ψ1(d(η2,ξ2))+ψ2(d(η1,ξ1))

≤ψ1(d(ξ1,η1)+d(η2,ξ2))+ψ2(d(ξ2,η2)+d(η1,ξ1))

=ψ(d(ξ1,η1)+d(η2,ξ2))

=ψ(δ(ξ,η)) (28)

for all ξ= (ξ1,ξ2), η= (η1,η2) ∈Y , where β : Y ×Y → [0,+∞) is the function defined by

β((ξ1,ξ2), (η1,η2))=min{α((ξ1,ξ2), (η1,η2)),α((η2,η1), (ξ2,ξ1))} (29)

and TF : Y → Y is given by Lemma 5.1. Let {(xn, yn)} be a sequence in Y = X × X such
that β((xn, yn), (xn+1, yn+1)) ≥ 1 and (xn, yn) → (x, y) as n → +∞. Then TF is continuous and
β-(ψ1 +ψ2)-contractive mapping. Let ξ= (ξ1,ξ2), η= (η1,η2) ∈Y , β(ξ,η)≥ 1. Using condition (ii),
we obtain immediately that β(TFξ,TFη) ≥ 1. Then TF is β-admissible. Moreover, from
condition (iii), we know that there exists (x0, y0) ∈ Y such that β((x0, y0),TF(x0, y0)) ≥ 1 and
β((x0, y0),T2

F (x0, y0))≥ 1. All the hypotheses of Corollary 3.4 are satisfied, and so we deduce the
existence of a fixed point of TF that gives us the existence of a coupled fixed point of F .

6. Application to Nonlinear Integral Equation
In this section, we prove the existence for certain nonlinear integral equations and result for a
fractional-order integral equation.

x(t)= p(t)+ f (t, x(t), x(t))
∫ t

0
k(t, s)g(s, x(s), x(s))ds, t ∈ [0,T], (30)

where T > 0 and p : [0,T]→ R. We suppose that the following conditions are satisfied.

(i) The function f , g : [0,T]×R×R → R is continuous and k : [0,T]× [0,T] → [0,+∞) is a
function such that k(t, ·) ∈ L1([0,T]) for all t ∈ [0,T].

(ii) There exists an upper semi-continuous function ψi : [0,+∞) → [0,+∞), i = 1,2, are
nondecreasing functions such that ψ = ψ1 +ψ2 is convex, ψ(0) = 0, and lim

n→∞ψ
n(t) = 0

for each t > 0, suppose that for x ≥ u and y≥ v, we have

0≤ g(t, x, y)− g(t,u,v)≤ 1
F0

(ψ1(x−u)+ψ2(y−v)), (31)

where

F0 =max{| f (t,0,0)| : t ∈ [0,T]}.

(iii) for every s ∈ [0,T], we have
∥∥∥∥∫ T

0
k(t, s)ds

∥∥∥∥∞
< 1.

Journal of Informatics and Mathematical Sciences, Vol. 12, No. 4, pp. 299–316, 2020



Fixed Point Theorems of α∗-ψ-Common Rational Type. . . : F. Lotfy and J. H. Asl 313

Theorem 6.1. Consider nonlinear integral equations (30) with g ∈ C([0,T]×R×R,R) is C1

and nondecreasing in the third variables. Then the fractional integral equation (30) with the
assumptions (i)-(iii) has at least one solution x∗ ∈ C([0,T],R).

Proof. Let X = C([0,T],R) is partially ordered if we define the following order relation in X :

x, y ∈ X , x ≤ y⇔ x(t)≤ y(t), for all t ∈ [0,T].

It is well-known that (X ,d) is a complete metric space with the metric

d(x, y)= sup
t∈[0,T]

|x(t)− y(t)|, x, y ∈ C([0,T],R).

Suppose {xn} is a nondecreasing sequence in X that converges to x ∈ X . Then for every t ∈ [0,T],
the sequence of the real numbers

x1(t)≤ x2(t)≤ ·· · ≤ xn(t)≤ ·· · ,

converges to x(t). Therefore, for all t ∈ I and n ∈ N, we have xn(t) ≤ x(t). Hence xn ≤ x, for all
n ∈ N. Also, X × X is a partially ordered set if we define the following order relation in X × X :

(x, y)≤r (u,v)⇔ x(t)≤ u(t) and y(t)≤ v(t), for all t ∈ [0,T],

for all (x, y), (u,v) ∈ X × X . For any x, y ∈ X , max{x(t),u(t)} for all t ∈ [0,T] is in X and is the
upper bound of x, u. Therefore, for every (x, y) and (u,v) ∈ X × X , max{x(t),u(t)}, max{y(t),v(t)},
in X × X for all t ∈ [0,T] is comparable to (x, y) and (u,v).

Define F : X × X → X by

F(x, y)(t)= p(t)+ f (t, x(t), y(t))
∫ t

0
k(t, s)g(s, x(s), y(s))ds, for all t ∈ [0,T], (32)

Since f is nondecreasing in the second and third of its variables then F is nondecreasing in
each of its variables.

Now, for x ≥ u, y≥ v, that is, x(t)≥ u(t), y(t)≥ v(t) for all t ∈ [0,T]. We have

d(F(x, y),F(u,v))= sup
t∈[0,T]

|F(x, y)(t)−F(u,v)(t)|

= sup
t∈[0,T]

∣∣∣∣{ f (t, x(t), y(t))
∫ t

0
k(t, s)g(s, x(s), y(s))ds

− f (t,u(t),v(t))
∫ t

0
k(t, s)g(s,u(s),v(s))ds

}∣∣∣∣
≤ sup

t∈[0,T]

∣∣∣∣{F0

(∫ t

0
k(t, s)g(s, x(s), y(s))ds−

∫ t

0
k(t, s)g(s,u(s),v(s))ds

)}∣∣∣∣
= sup

t∈[0,T]

∣∣∣∣{F0

∫ t

0
k(t, s)(g(s, x(s), y(s))− g(s,u(s),v(s)))ds

}∣∣∣∣
≤ sup

t∈[0,T]

∣∣∣∣{F0

(∫ t

0
k(t, s)

ψ1(x−u)+ψ2(y−v)
F0

ds
)}∣∣∣∣

= sup
t∈[0,T]

∣∣∣∣{F0 × ψ1(x−u)+ψ2(y−v)
F0

×
∫ t

0
k(t, s)ds

}∣∣∣∣
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≤ sup
t∈[0,T]

∣∣∣∣{(ψ1(x−u)+ψ2(y−v))
∫ t

0
k(t, s)ds

}∣∣∣∣
= (ψ1(x−u)+ψ2(y−v)) sup

t∈[0,T]

{∣∣∣∣∫ t

0
k(t, s)ds

∣∣∣∣}
≤ (ψ1(x−u)+ψ2(y−v))

∥∥∥∥∫ t

0
k(t, s)ds

∥∥∥∥
∞

≤ψ1(d(x,u))+ψ2(d(y,v)). (33)

Thus F satisfies the condition of Theorem 5.2. Now, let (x∗, y∗) be a coupled lower solution of
certain nonlinear integral equations problem (30) then we have x∗ ≤ F(x∗, y∗) and y∗ ≤ F(y∗, x∗).
Then, Theorem 6.1 gives that F has a unique coupled fixed point (x∗, y∗) with x∗ = y∗. Then
x∗(t) is the solution of certain nonlinear integral equations (30).

An existence result for a fractional integral equation

x(t)= f (t, x(t), x(t))
Γ(α)

∫ t

0

h′(s)g(s, x(s), x(s))
(h(t)−h(s))1−α ds, t ∈ [0,T], (34)

where T > 0, α ∈ (0,1), h : [0,T] → R and Γ is the Euler gamma function given by Γ(α) =∫ ∞
0 tα−1e−1dt. We suppose that the following conditions are satisfied.

(iv) The function h : [0,T]→R is C1 and nondecreasing.

(v) The function g : [0,T]×R×R→R is continuous and there exists a nondecreasing function
ω : [0,∞)→ [0,∞) such that

|g(t, x(t), y(t))| ≤ω(|(x(t), y(t))|) (t, x(t), y(t)) ∈ [0,T]×R×R.

(vi) There exists r0 > 0 such that

(ψ(r0)+F0)ω(r0)(g(T)− g(0)))α ≤ r0Γ(α+1) and
ω(r0)
Γ(α+1)

× (g(T)− g(0))α ≤ 1 . (35)

Corollary 6.2 ([15]). Consider fractional-order integral equation (30) with g ∈ C([0,T]×R×R,R)
is C1 and nondecreasing in the third variables. Suppose that for x ≥ u and y≥ v, we have

0≤ g(t, x, y)− g(t,u,v)≤ Γ(α+1)
F0(h(t)−h(s))α

(ψ1(x−u)+ψ2(y−v)), (36)

Then the fractional-order integral equation (30) with the assumptions (i)-(iii) has at least one
solution x∗ ∈ C([0,T],R).

Proof. Let X = C([0,T],R) is partially ordered if we define in Theorem 6.1,

k(t, s)= h′(s)((h(t)−h(s))α−1

Γ(α)
for all s.t ∈ [0,T].

We consider the set of all closed bounded real continuous function on [0,1], say X =
CB([0,1],R), endowed with the metric d : X × X →R given by

d(x, y)= sup
t∈[0,1]

|x(t)− y(t)|, for all x, y ∈ X .
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Clearly, (X ,d) is a complete metric space, which can be equipped with the graph G(X ,E) with
V = X and E ⊂ X × X given by

(x, y) ∈ E ⇔ x(t)≤ y(t) for all t ∈ [0,1].

Thus, (G,d) is regular (see in [16]).

Corollary 6.3 ([16]). Let Λ : X → X be the integral operator defied by

Λ(x)(t)= p(t)+
∫ t

0

(t−u)α−1

g(u, y(u))
g(u, x(u))du, t ∈ [0,1], α ∈ (0,1). (37)

Suppose that the following conditions hold:
(a) there exists x0 ∈ X such that (x0,Λ(x0) ∈ E;

(b) g(u, ·) : R→R is increasing, for every u ∈ [0,1];

(c) for x, y ∈ X with (x, y) ∈ E, we have

0≤ g(u, y(u))− g(u, x(u))≤ Γ(α+1)
2

ln(1+|x(u)− y(u)|), for all u ∈ [0,1]. (38)

Then Λ has a fixed point.

Proof. We define in Theorem 6.1,

k(t, s)= (t− s)α−1

Γ(α)
for all s.t ∈ [0,1].
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