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1. Introduction
Let Σ denote the class of meromorphic functions of the form

f (z)= 1
z
+

∞∑
n=1

anzn (1.1)

which are analytic in the punctured unit disc

U∗ := {z : z ∈ C, 0< |z| < 1}=U \{0}. (1.2)
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Let g ∈Σ be given by

g(z)= 1
z
+

∞∑
n=1

bnzn. (1.3)

Then the Hadamard product (or convolution) of f and g is given by

( f ∗ g)(z)= 1
z
+

∞∑
n=1

anbnzn = (g∗ f )(z). (1.4)

Let us consider the second order linear homogeneous differential equation (see, Baricz [4, p. 7]):

z2w′′(z)+ zw′(z)+ (z2 −υ2)w(z)= 0 (υ ∈ C). (1.5)

The function wυ(z), which is called the generalized Bessel function of the first kind of order υ
where υ is an unrestricted (real or complex) number, is defined a particular solution of (1.5).
The function wυ(z), has the representation

wυ(z)=
∞∑

n=0

(−1)n

Γ(n+1)Γ(n+υ+1)

( z
2

)2n+υ
.

Let us define

Lυ = 2υΓ(υ+1)

z
υ
2+1

wυ(z
1
2 )

= 1
z
+

∞∑
n=1

(−1)nΓ(υ+1)
4nΓ(n+1)Γ(n+υ+1)

zn .

The operator Lυ is a modification of the of the operator introduced by Deniz [5] for analytic
functions.

By using the Hadamard product (or convolution), we define the operator Lυ as follows:

(Lυ f ) (z)=Lυ(z)∗ f (z)

= 1
z
+

∞∑
n=1

φn(υ)anzn, (1.6)

where φn(υ)= (−1)nΓ(υ+1)
4nΓ(n+1)Γ(n+υ+1)

.

The operator Lυ is a modification of the operator introduced by Szasz and Kupan [11] for
analytic functions.

It is easy to verify that

z (Lυ f )′ (z)= (υ+1)(Lυ f ) (z)− (υ+2)(Lυ+1 f ) (z). (1.7)

Motivated by Kumar et al. [10], Atshan and Kulkarni [3], and Venkateswarlu et al. [12,13].
Now, we define a new subclass σ∗

p(η,k,λ,υ) of
∑

.

Definition 1.1. For 0≤ η< 1, k ≥ 0, 0≤λ< 1
2 , we let σ∗

p(η,k,λ,υ) be the subclass of
∑

consisting
of functions of the form (1.1) and satisfying the analytic criterion

−Re
(

z(Lυ f (z))′

Lυ f (z)
+λz2 (Lυ f (z))′′

Lυ f (z)
+η

)
> k

∣∣∣∣ z(Lυ f (z))′

Lυ f (z)
+λz2 (Lυ f (z))′′

Lυ f (z)
+1

∣∣∣∣ . (1.8)

In order to prove our results wee need the following lemmas [2].
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Lemma 1.2. If η is a real number and ω=−(u+ iv) is a complex number then

Re(ω)≥ η ⇔ |ω+ (1−η)|− |ω− (1−η)| ≥ 0.

Lemma 1.3. If ω= u+ iv is a complex number and η is a real number then

−Re(ω)≥ k|ω+1|+η ⇔ −Re
(
ω(1+keiθ)+keiθ)≥ η, −π≤ θ ≤π.

The main object of this paper is to study some usual properties of the geometric function
theory such as the coefficient bounds, extreme points, radii of meromorphic starlikeness and
convexity for the class σ∗

p(η,k,λ,υ). Further, we obtain partial sums and neighborhood properties
for the class also.

2. Coefficient Estimates
In this section we obtain necessary and sufficient condition for a function f to be in the class
σ∗

p(η,k,λ,υ).

Theorem 2.1. Let f ∈∑
be given by (1.1). Then f ∈σ∗

p(η,k,λ,υ) if and only if
∞∑

n=1
[n(k+1)(1+ (n−1)λ)+ (k+η)]φn(υ)an ≤ (1−η)−2λ(1+k). (2.1)

Proof. Let f ∈σ∗
p(η,k,λ,υ). Then by Definition 1.1 and using Lemma 1.3, it is enough to show

that

−Re
{(

z(Lυ f (z))′

Lυ f (z)
+λz2 (Lυ f (z))′′

Lυ f (z)

)
(1+keiθ)+keiθ

}
> η, −π≤ θ ≤π . (2.2)

For convenience

C(z)=−[
z(Lυ f (z))′+λz2(Lυ f (z))′′

]
(1+keiθ)−keiθLυ f (z) , D(z)=Lυ f (z) .

That is, the equation (2.2) is equivalent to

−Re
(

C(z)
D(z)

)
≥ η.

In view of Lemma 1.2, we only need to prove that

|C(z)+ (1−η)D(z)|− |C(z)− (1−η)D(z)| ≥ 0.

Therefore,

|C(z)+ (1−η)D(z)| ≥ (2−η−2λ(k+1))
1
|z| −

∞∑
n=1

[n(k+1)(1+ (n−1)λ)+ (k+η−1)]φn(υ)an|z|n

and

|C(z)− (1−η)D(z)| ≤ (η+2λ(k+1)))
1
|z| +

∞∑
n=1

[n(k+1)(1+ (n−1)λ)+ (k+η+1)]φn(υ)an|z|n.

It is to show that

|C(z)+ (1−η)D(z)|− |C(z)− (1+η)D(z)|

≥ (2(1−η)−4λ(k+1))
1
|z| −2

∞∑
n=1

[n(k+1)(1+ (n−1)λ)+ (k+η)]φn(υ)an|z|n

≥ 0, by the given condition (2.1).
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Conversely, suppose f ∈σ∗
p(η,k,λ,υ). Then by Lemma 1.2, we have (2.2).

Choosing the values of z on the positive real axis the inequality (2.2) reduces to

Re


[1−η−2λ(1+keiθ)] 1

z2 +
∞∑

n=1
[n(1+ (n−1)λ)(1+keiθ)+ (η+keiθ)]φn(υ)zn−1

1
z2 +

∞∑
n=1

φn(υ)anzn−1

≥ 0.

Since Re(−eiθ)≥−|eiθ| = −1, the above inequality reduces to

Re


[1−η−2λ(1+k)] 1

r2 +
∞∑

n=1
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)anrn−1

1
r2 +

∞∑
n=1

φn(υ)rn−1

≥ 0.

Letting r → 1− and by the mean value theorem, we have obtained the inequality (2.1).

Corollary 2.2. If f ∈σ∗
p(η,k,λ,υ) then

an ≤ (1−η)−2λ(k+1)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

. (2.3)

By taking λ= 0 in Theorem 2.1, we get the following corollary, which is coincide with [11].

Corollary 2.3. If f ∈σ∗
p(η,k,υ) then

an ≤ 1−η
[n(1+k)+ (η+k)]φn(υ)

. (2.4)

Theorem 2.4. If f ∈σ∗
p(η,k,λ,υ) then for 0< |z| = r < 1,

1
r
− (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
r ≤ | f (z)| ≤ 1

r
+ (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
r. (2.5)

This result is sharp for the function

f (z)= 1
z
+ (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
z. (2.6)

Proof. Since f (z)= 1
z +

∞∑
n=1

anzn, we have

| f (z)| = 1
r
+

∞∑
n=1

anrn ≤ 1
r
+ r

∞∑
n=1

an. (2.7)

Since n ≥ 1, (2k+η+1)φ1(υ)≤ [n(k+1)(1+ (n−1)λ+ (k+η)]φn(υ), using Theorem 2.1, we have

(2k+η+1)φ1(υ)
∞∑

n=1
an ≤

∞∑
n=1

[n(k+1)(1+ (n−1)λ+ (k+η)]φn(υ)

≤ (1−η)−2λ(k+1)

⇒
∞∑

n=1
an ≤ (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
.

Using the above inequality in (2.7), we have

| f (z)| ≤ 1
r
+ (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
r and | f (z)| ≥ 1

r
− (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
r.
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The result is sharp for the function f (z)= 1
z +

(1−η)−2λ(k+1)
(2k+η+1)φ1(υ) z.

Corollary 2.5. If f ∈σ∗
p(η,k,λ,υ) then

1
r2 − (1−η)−2λ(k+1)

(2k+η+1)φ1(υ)
≤ | f ′(z)| ≤ 1

r2 + (1−η)−2λ(k+1)
(2k+η+1)φ1(υ)

.

The result is sharp for the function given by (2.6)

3. Extreme Points
Theorem 3.1. Let f0(z)= 1

z and

fn(z)= 1
z
+

∞∑
n=1

(1−η)−2λ(k+1)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

zn, n ≥ 1. (3.1)

Then f ∈σ∗
p(η,k,λ,υ) if and only if it can be expressed in the form

f (z)=
∞∑

n=0
un fn(z), un ≥ 0 and

∞∑
n=1

un = 1. (3.2)

Proof. Suppose f (z) can be expressed as in (3.2). Then

f (z)=
∞∑

n=0
un fn(z)

= u0 f0(z)+
∞∑

n=1
un fn(z)

= 1
z
+

∞∑
n=1

un
(1−η)−2λ(k+1)

[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)
zn.

Therefore
∞∑

n=1
un

(1−η)−2λ(k+1)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)
(1−η)−2λ(k+1)

zn

=
∞∑

n=1
un = 1−u0 ≤ 1.

Thus, by Theorem 2.1, f ∈σ∗
p(η,k,λ,υ).

Conversely, suppose that f ∈σ∗
p(η,k,λ,υ). Since

an ≤ (1−η)−2λ(k+1)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

n ≥ 1.

We set un = [n(1+k)(1+(n−1)λ)+(η+k)]φn(υ)
(1−η)−2λ(k+1) an, n ≥ 1 and u0 = 1−

∞∑
n=1

un.

Then, we have f (z)=
∞∑

n=0
un fn(z)= u0 f0(z)+

∞∑
n=1

un fn(z).

Hence the results follows.
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4. Radii of Meromorphically Starlike and Convexity
Theorem 4.1. Let f ∈σ∗

p(η,k,λ,υ). Then f is meromorphically starlike of order δ, (0≤ δ≤ 1) in
the unit disc |z| < r1, where

r1 = inf
n

[
(1−δ)

(n+2−δ)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

(1−η)−2λ(k+1)

] 1
n+1

, n ≥ 1.

The result is sharp for the extremal function f (z) given by (3.1).

Proof. The function f ∈σ∗
p(η,k,λ,υ) of the form (1.1) is meromorphically starlike of order δ is

the disc |z| < r1 if and only if it satisfies the condition∣∣∣∣ z f ′(z)
f (z)

+1
∣∣∣∣< (1−δ). (4.1)

Since ∣∣∣∣ z f ′(z)
f (z)

+1
∣∣∣∣≤

∣∣∣∣∣∣∣∣
∞∑

n=1
(n+1)anzn+1

1+
∞∑

n=1
anzn+1

∣∣∣∣∣∣∣∣≤
∞∑

n=1
(n+1)|an||z|n+1

1−
∞∑

n=1
|an||z|n+1

.

The above expression is less than (1−δ) if
∞∑

n=1

(n+2−δ)
(1−δ) an|z|n+1 < 1.

Using the fact that f (z) ∈σ∗
p(η,k,λ,υ) if and only if

∞∑
n=1

[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)
(1−η)−2λ(k+1)

an ≤ 1.

Thus, (4.1) will be true if
(n+2−δ)

(1−δ)
|z|n+1 < [n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

(1−η)−2λ(k+1)
or equivalently

|z|n+1 < (1−δ)
(n+2−δ)

[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)
(1−η)−2λ(k+1)

which yields the starlikeness of the family.

The proof of the following theorem is analogous to that of Theorem 4.1, and so we omit the
proof.

Theorem 4.2. Let f ∈σ∗
p(η,k,λ,υ). Then f is meromorphically convex of order δ, (0≤ δ≤ 1) in

the unit disc |z| < r2, where

r2 = inf
n

[
(1−δ)

n(n+2−δ)
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

(1−η)−2λ(k+1)

] 1
n+1

, n ≥ 1.

The result is sharp for the extremal function f (z) given by (3.1).
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5. Partial Sums
Let f ∈∑

be a function of the form (1.1). Motivated by Silverman [8] and Silvia [9] and also see
[1], we define the partial sums fm defined by

fm(z)= 1
z
+

m∑
n=1

anzn, (m ∈ N). (5.1)

In this section we consider partial sums of function from the class σ∗
p(η,k,λ,υ) and obtain

sharp lower bounds for the real part of the ratios of f to fm and f ′ to f ′m.

Theorem 5.1. Let f ∈σ∗
p(η,k,λ,υ) be given by (1.1) and define the partial sums f1(z) and fm(z)

by

f1(z)= 1
z

and fm(z)= 1
z
+

m∑
n=1

|an|zn, (m ∈ N \{1}). (5.2)

Suppose also that
∞∑

n=1
dn|an| ≤ 1, where

dn ≥


1, if n = 1,2, · · · ,m
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

(1−η)−2λ(k+1)
, if n = m+1,m+2, · · · .

(5.3)

Then f ∈σ∗
p(η,k,λ,υ). Furthermore

Re
(

f (z)
fm(z)

)
> 1− 1

dm+1
and (5.4)

Re
(

fm(z)
f (z)

)
> dm+1

1+dm+1
. (5.5)

Proof. For the coefficient dn given by (5.3) it is not difficult to verify that

dm+1 > dm > 1. (5.6)

Therefore, we have
m∑

n=1
|an|+dm+1

∞∑
n=m+1

|an| ≤
∞∑

n=1
|an|dm ≤ 1 (5.7)

by using the hypothesis (5.3). By setting

g1(z)= dm+1

(
f (z)

fm(z)
−

(
1− 1

dm+1

))
= 1+

dm+1
∞∑

n=m+1
anzn−1

1+
∞∑

n=1
|an|zn−1

then it sufficient to show that

Re
(
g1(z)

)≥ 0, (z ∈U) or
∣∣∣∣ g1(z)−1
g1(z)+1

∣∣∣∣≤ 1, (z ∈U)

and applying (5.7), we find that

∣∣∣∣ g1(z)−1
g1(z)+1

∣∣∣∣≤ dm+1
∞∑

n=m+1
|an|

2−2
m∑

n=1
|an|−dm+1

∞∑
n=m+1

|an|
≤ 1, (z ∈U)
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which ready yields the assertion (5.4) of Theorem 5.1. In order to see that

f (z)= 1
z
+ zm+1

dm+1
(5.8)

gives sharp result, we observe that for

z = re
iπ
m that

f (z)
fm(z)

= 1− rm+2

dm+1
→ 1− 1

dm+1
as r → 1−.

Similarly, if we takes

g2(z)= (1+dm+1)
(

fm(z)
f (z)

− dm+1

1+dm+1

)
and making use of (5.7), we denote that

∣∣∣∣ g2(z)−1
g2(z)+1

∣∣∣∣< (1+dm+1)
∞∑

n=m+1
|an|

2−2
m∑

n=1
|an|− (1−dm+1)

∞∑
n=m+1

|an|
which leads us immediately to the assertion (5.5) of Theorem 5.1.

The bound in (5.5) is sharp for each m ∈ N with extremal function f (z) given by (5.8).

The proof of the following theorem is analogous to that of Theorem 5.1, so we omit the proof.

Theorem 5.2. If f ∈σ∗
p(η,k,λ,υ) be given by (1.1) and satisfies the condition (2.1) then

Re
(

f ′(z)
f ′m(z)

)
> 1− m+1

dm+1

and

Re
(

f ′m(z)
f ′(z)

)
> dm+1

m+1+dm+1
,

where

dn ≥


n, if n = 2,3, · · · ,m
[n(1+k)(1+ (n−1)λ)+ (η+k)]φn(υ)

(1−η)−2λ(k+1)
, if n = m+1,m+2, · · · .

The bounds are sharp with the extremal function f (z) of the form (2.4).

6. Neighborhoods for the Class σ
∗ξ
p (η,k,λ,υ)

In this section, we determine the neighborhood for the class σ∗ξ
p (η,k,λ,υ) which we define as

follows:

Definition 6.1. A function f ∈∑
is said to be in the class σ∗ξ

p (η,k,λ,υ) if there exits a function
g ∈σ∗

p(η,k,λ,υ) such that∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣< 1−ξ, (z ∈ E,0≤ ξ< 1). (6.1)
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Following the earlier works on neighborhoods of analytic functions by Goodman [6] and
Ruscheweyh [7], we define the δ-neighborhoods of function f ∈∑

by

Nδ( f )=
{

g ∈∑
: g(z)= 1

z
+

∞∑
n=1

bnzn and
∞∑

n=1
n|an −bn| ≤ δ

}
. (6.2)

Theorem 6.2. If g ∈σ∗
p(η,k,λ,υ) and

ξ= 1− δ(2k+η+1)φ1(υ)
(2k+η+1)φ1(υ)− (1−η)+2λ(k+1)

(6.3)

then Nδ(g)⊂σ∗ξ
p (η,k,λ,υ).

Proof. Let f ∈ Nδ(g). Then we find from (6.2) that
∞∑

n=1
n|an −bn| ≤ δ (6.4)

which implies the coefficient inequality
∞∑

n=1
|an −bn| ≤ δ (n ∈ N). (6.5)

Since g ∈σ∗
p(η,k,λ,υ), we have

∞∑
n=1

bn ≤ (1−η)−2λ(k+1)
(2k+η+1)φ1(υ)

. (6.6)

So that∣∣∣∣ f (z)
g(z)

−1
∣∣∣∣<

∞∑
n=1

|an −bn|

1−
∞∑

n=1
bn

= δ(2k+η+1)φ1(υ)
(2k+η+1)φ1(υ)− (1−η)+2λ(k+1)

= 1−ξ
provided ξ is given by (6.3). Hence by definition, f ∈σ∗ξ

p (η,k,λ,υ) for ξ given by which completes
the proof.

Conclusion
In this study, the authors have investigated of a novel linear operator that was related to
the Bessel function. Different results and properties described in this study were seen to be
associated to a particular subclass belonging to the class meromorphic univalent functions in
the unit disk U∗. This study was able to derive several results which have been explained in
Theorems 2.1, 2.4, 3.1, 4.1, 4.2, 5.1, 5.2 and 6.2. The various results which we presented here
would extend and improve several earlier studies on the subject of the paper.
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