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Abstract. The nonlinear oscillation model using the Van der Pol equation was able to
phenomenologically explain the formation of periodic cavities, the cavity shape, and the regularity of
the cavity pattern in the core layer as a result of the relaxation oscillation and cavity compression
and/or deformation. We assumed the relationships between the parameters of the population dynamics
of interacting self-oscillators using the Kuramoto model and the fiber fuse propagation, and found
an equation describing the power dependence of the periodic cavity interval. The experimentally
determined cavity intervals at Pth ≤ P0 ≤ 5 W satisfied this equation. Furthermore, the experimental
cavity intervals at P0 > 6 W can be explained by considering the power dependence of the propagation
velocity of the fiber fuse and the constant period of the Van der Pol oscillator.
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1. Introduction
The fiber fuse phenomenon was first observed in 1987 by British scientists [24], [25], [28], [29].
A fiber fuse can be generated by bringing the end of a fiber into contact with an absorbent
material or melting a small region of a fiber using an arc discharge of a fusion splice machine
[28], [30], [46], [47]. If a fiber fuse is generated, an intense blue-white flash occurs in the
fiber core, and this flash propagates along the core in the direction of the optical power source.
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The core layer in which the fuse propagates is seriously damaged, and the damage has the form
of periodic bullet-shaped cavities (or occasionaly nonperiodic filaments) remaining in the core
[3], [4], [6], [12–16], [18–21], [24], [25], [28–30], [34], [35], [46–51], as shown in Figure 1.
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Figure 1. Schematic view of damaged optical fiber.

In this figure Λ is the periodic cavity interval. The cavity patterns owing to the fiber fuse in
single-mode fibers can be classified into the three patterns shown in Figure 2, where l is the
length of the cavity.
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Figure 2. Cavity patterns observed in optical fiber.

The observed periodic cavity patterns belong to patterns (a)-(c) with the pattern depending
on the value of l/Λ.

The detection systems for fiber fuse have been proposed by several research institutes, which
use FBG sensors [36], an optical time-domain reflectometer [1], and an optical frequency-domain
reflectometer [27]. Recently, several types of optical fiber sensors based on periodic cavities
have been proposed as a cost-effective approach to sensor production [3], [18–21]. For sensor
applications, the precise control of l and/or Λ is very important.

These cavities have been considered to be the result of either the classic Rayleigh instability
caused by the capillary effect in the molten silica surrounding a vaporized fiber core [4] or
the electrostatic repulsion between negatively charged layers induced at the plasma-molten
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silica interface [58–60]. However, these models cannot explain in depth to form several cavity
patterns shown in Figure 2 and the precise values of l and/or Λ cannot be estimated by using
these models.

Recently, the author has proposed a novel nonlinear oscillation model, where the oscillatory
motion of the ionized gas plasma during fiber fuse propagation behaves as a Van der Pol
oscillator, and qualitatively explained both the silica-glass densification and cavity pattern
formation observed in fiber fuse propagation by using this model [41], [42]. In this paper, the
author at first describes the nonlinear oscillation model using the Van der Pol equation and
cavity pattern formation observed in fiber fuse propagation.

The Van der Pol oscillator is a classical model for self-oscillating relaxation systems which,
after initial amplitude growth, reach a limit cycle in phase space due to a nonlinear saturation
mechanism. The reason for the occurrence of the rhythmical interaction of many Van der Pol
oscillators in the fiber fuse initiation process, at which the cavities are formed, has not been
studied in detail theoretically. Therefore, in the latter part of this paper, the author describes
the initiation process of the fiber fuse on the basis of the population dynamics of interacting
self-oscillators.

2. Nonlinear Oscillation Behavior in Ionized Gas Plasma
A low-frequency plasma instability is triggered by moving the high-temperature front of a fiber
fuse toward the light source. It is well known that such a low-frequency plasma instability
behaves as a Van der Pol oscillator with the natural frequency ω0 (see literatures listed in [41]).

The density ρ of the plasma is assumed to be in the form ρ = ρ0 +ρ1, where ρ0 is the initial
density of the stationary (unperturbed) part in the front region of the plasma and ρ1 is the
perturbed density. In the following calculation, we divided ρ1 by ρ0 and used this value as ρ1.

The dynamical behavior of ρ1 resulting from fiber fuse propagation can be represented by
the Van der Pol equation

d2ρ1

dt2 −ε(1−βρ1
2 +2ζρ1)

dρ1

dt
+ω0

2ρ1 = 0, (2.1)

where ε is a parameter that characterizes the degree of nonlinearity and β characterizes
the nonlinear saturation (see [41, Appendix B]). The nonlinearity parameter ζ characterizes the
oscillation pattern.

The natural frequency ω0 of the oscillation of the gas plasma is determined by the ion-sound
velocity Cs and the free-running distance L f of the ion-sound wave, and is given by

ω0 = 2π f = 2π
Cs

L f
, (2.2)

where f is the frequency of the oscillation of the gas plasma, which is estimated to be about
1 MHz [42].

The oscillatory motion for ε = 7.5, β = 6.5, and ζ = 0 was calculated using Eq. (2.1).
The calculated result is shown in Figure 3, where the perturbed density ρ1 is plotted as a
function of time.
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Figure 3. Time dependence of the perturbed density during fiber fuse propagation. ε= 7.5, β= 6.5, ζ= 0.

It can be seen that for ε = 7.5, the oscillations consist of sudden transitions between
compressed and rarefied regions. This type of motion is called a relaxation oscillation [55].
The period Φ of the motion corresponding to ε= 7.5 was estimated to be about 18.08 µs.

The oscillatory motion generated in the high-temperature front of the ionized gas plasma
can be transmitted to the neighboring plasma at the rate of Vf when the fiber fuse propagates
toward the light source. Figure 4 shows a schematic view of the dimensional relationship
between the temperature and the perturbed density of the ionized gas plasma during fiber fuse
propagation.
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Figure 4. Schematic view of the dimensional relationship between the temperature and the perturbed
density of the ionized gas plasma during fiber fuse propagation.

In Figure 4, Λ is the interval between the periodic compressed (or rarefied) parts.
The relationship between the period Φ and the interval Λ is

Λ=ΦVf , (2.3)

where Vf (∼ 1 m/s) is the propagation velocity of the fiber fuse. The Λ value of the motion
corresponding to ε = 7.5 is estimated to be about 18.08 µm using Eq. (2.3) and Vf = 1 m/s.
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If a large amount of molecular oxygen (O2) accumulates in the rarefied part, the periodic
formation of bubbles (or cavities) will be observed. In such a case, Λ is equal to the periodic
cavity interval. The estimated Λ value (18.08 µm) is close to the experimental periodic cavity
intervals of 13-22 µm observed in fiber fuse propagation [48], [52].

Figure 5 shows the relationship between Φ and the nonlinearity parameter ε.

0

10

20

30

40

50

P
e

ri
o

d
 Φ

 (
µ

s
)

0 2 4 6 8 10 12 14

Nonlinearity parameter ε

β = 6.5
ζ = 0.0

Figure 5. Relationship between the period Φ and the nonlinearity parameter ε. β= 6.5, ζ= 0.

As shown in Figure 5, Φ, which is proportional to the interval Λ, increases with increasing ε.
That is, the increase in Φ and/or Λ occurs because of the enhanced nonlinearity. It was found
that the experimental periodic cavity interval increases with the laser pump power [48], [52].
It can therefore be presumed that the nonlinearity of the Van der Pol oscillator occurring in the
ionized gas plasma is enhanced with increasing pump power.

Kashyap reported that the cavity shape was dependent on the nature of the input laser light
(CW or pulses) [29], [30]. Todoroki classified the damage to the front part of a fiber fuse into
three shapes (two spheroids and a long partially cylindrical cavity) depending on the pump
power [48]. He also found that a rapid increase or decrease in the pump power results in an
increase in the length of the cavity-free segment or the occurrence of an irregular cavity pattern,
respectively [51]. These findings indicate that the cavity shape and the regularity of the cavity
pattern may be determined by the degree of nonlinearity of the Van der Pol oscillator.

3. Effect of Nonlinearity Parameters on Cavity Patterns
The nonlinearity parameter ζ characterizes the oscillation pattern. The oscillatory motion for
ε= 7.5, β= 6.5, and ζ= 0 was shown in Figure 3, where the perturbed density ρ1 is plotted as a
function of time. It can be seen in Figure 3 that the oscillations consist of sudden transitions
between compressed and rarefied regions, and the retention time τr of the rarefied regions
equals that of the compressed regions τc . The relationship between the period Φ (= τr +τc) and
the interval Λ is given by Eq. (2.3), and the relationship between τr and the length l of the
cavity is

l = τrVf . (3.1)
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The Λ and l values of the motion corresponding to ε = 7.5, β = 6.5, and ζ = 0 are estimated
to be about 9.04 and 18.08 µm, respectively, using Eqs. (2.3) and (3.1) and Vf = 1 m/s. That is,
l/Λ= 0.5 in the case of ζ= 0.

Next, the oscillatory motion for ζ = 2 and −2 with ε = 7.5 and β = 6.5 was examined.
The calculated results are shown in Figures 6 and 7, respectively.
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Figure 6. Time dependence of the perturbed density during fiber fuse propagation. ε= 7.5, β= 6.5, ζ= 2.
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Figure 7. Time dependence of the perturbed density during fiber fuse propagation. ε = 7.5, β = 6.5,
ζ=−2.

As shown in Figure 6, the retention time τr of the rarefied regions is larger than that of the
compressed regions τc. As a result, the ratio l/Λ is larger than 0.5 in the case of ζ= 2. On the
other hand, as shown in Figure 7, τr is smaller than τc and l/Λ< 0.5 in the case of ζ=−2.

Figure 8 shows the relationship between l/Λ and the nonlinearity parameter ζ.
As shown in Figure 8, l/Λ increases with increasing ζ and approaches its maximum value

(about 0.724) at ζ∼ 3.1. In contrast, l/Λ approaches its minimum value (about 0.268) at ζ∼−3.3.
The large l/Λ (> 0.5) of the cavity was observed in the fiber fuse initiation process [46], [47]

and a varicose instability in the damaged fiber [4]. In contrast, small l/Λ (< 0.5) was observed
in the self-termination and initiation processes transmitting the threshold power (about 1.3 W)

Journal of Informatics and Mathematical Sciences, Vol. 12, No. 4, pp. 271–288, 2020



Cavity Pattern Formation and Its Dynamics of Fiber Fuse in Single-Mode Optical Fibers: Y. Shuto 277

at 1.48 µm [48], [49] and near the stop point in the fast detonation-like mode of fiber fuse
propagation under kW-range laser radiation [17].
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Figure 8. Relationship between l/Λ and the nonlinearity parameter ζ. ε= 7.5, β= 6.5.

Furthermore, the rapid changes of l/Λ values (or irregular cavity tracks) were observed near
the splicing point of HI 1060 and SMF-28e fibers [50]. Todoroki reported that irregular cavity
tracks remained over hetero-core splice points of HI 1060 and SMF-28e fiber pairs when an Yb
fiber laser at λ0 = 1.07 µm and P0 = 9 W was injected to the end of an HI 1060 fiber [50]. Since
the pump light propagates in the multimode in SMF-28e, its energy density is lower than that
in HI 1060. Thus, the occurrence of an irregular cavity track seems to be caused by the light
intensity modulation of hetero-core splicing. That is, a stable propagation mode in the HI 1060
or SMF-28e fiber becomes an unstable transient mode at the hetero-core splicing point, and
returns to the stable propagation mode in the SMF-28e or HI 1060 fiber after passing through
the splicing point.

From these observations it may be concluded that thermodynamic instability owing to
the rapid temperature increase and/or decrease, the light intensity modulation, and so forth
results in the increase or decrease in the l/Λ of the cavity, which tends to be 0.5 under a
thermodynamically stable condition.
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Figure 9. Cavity patterns observed in fiber fuse initiation, propagation, and termination processes.
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Figure 9 shows a schematic view of the l/Λ values in the fiber fuse initiation, propagation,
and termination processes. In the initiation process, thermodynamic instability is very high
owing to rapid increase in temperature of the core, melting and vaporization of the core material.
In the initiation process, l/Λ takes the value of < or > 0.5. Then the instability decreases and
approaches to zero after the passage of time and the next process (fiber fuse propagation) begins.
In fiber fuse propagation, l/Λ maintains the value of about 0.5. And when the termination
process occurs, thermodynamic instability increases with increasing of time, and l/Λ decreases
to be the value of < 0.5.

4. Population Dynamics of Interacting Self-Oscillators
in Ionized Gas Plasma

The Van der Pol oscillator is a classical model for self-oscillating relaxation systems which,
after initial amplitude growth, reach a limit cycle in phase space due to a nonlinear saturation
mechanism [26], [56].

It was found that the fiber fuse initiation process at which the cavities are formed consists of
two steps: the generation of a precursor in a hot spot and the transition to a steady state of fiber
fuse propagation out of the hot spot [47]. It can be assumed that a large population of coupled
limit-cycle oscillators is a useful model in studies of self-synchronization phenomena observed
in the initiation process of the fiber fuse.

In the first step, the oscillators in the hot spot are considered to be similar to each other,
although they cannot be strictly identical. Specifically, their natural frequencies may be
distributed over a certain range. Even if the frequencies are essentially identical in nature, they
cannot be perfectly free from environmental fluctuations. In any case, such randomness factors
are destructive to mutual entrainment or to the formation of coherent rhythmicity. In contrast,
coupling among the oscillators usually favors mutual synchronization. The conflict between
such opposing tendencies is common to all types of phase transitions [5].

If the coupling strength becomes sufficiently large to compensate the desynchronizing effect
due to the dispersion of natural frequencies, a macroscopic cluster of mutually entrained
oscillators with a common frequency appears, and thus global oscillations of the population
occur, that is, a fiber fuse is generated.

To investigate such a phenomenon, phase models are most frequently used. An attempt to
describe populations of oscillators in terms of phases was made by Winfree [57]. There have
been some attempts to make his idea more precise in some respects [2], [22], [9–11], [31–33],
[37–40], [44]. Kuramoto and coworkers and Daido developed a phase description method using
simple forms, which are derived by averaging underlying equations when the dispersion of
natural frequencies as well as the coupling is weak [9–11], [31–33], [37–40]. Among them, the
following class of models with uniform coupling appears to be particularly simple:

dφ j

dt
=ω j − K

N

N∑
k=1

sin(φ j −φk), ( j = 1,2, · · · , N) (4.1)

where N is the number of oscillators, φ j and ω j are the phases and natural frequencies of the
constituent oscillators, respectively, and K is the coupling strength of the interacting oscillators.
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The natural frequencies ω j are constant in time and are distributed randomly. This model
shown in Eq. (4.1) is called the Kuramoto model [2], [44]. The normalized number density of
oscillators having natural frequencies ω is denoted as g(ω). To simplify the analysis we treat
the case that g(ω) is symmetric about the mean value ω0.

In analogy to thermodynamic phase transitions, it is appropriate to define an order
parameter. A convenient choice for this is the complex quantity σexp(iθ) defined by

σexp(iθ)= 1
N

N∑
k=1

exp(iφ j), (4.2)

where θ = ω0t [37]. Equation (4.1) is rewritten using Eq. (4.2) as
dφ j

dt
=ω j −Kσsin

(
φ j −θ

)
, (4.3)

which shows that each oscillator is subject to an internal field whose strength is Kσ.
The fraction r of the population forming a synchronized cluster can be calculated as follows:

r = Ns

N
=

∫ ω0+Kσ

ω0−Kσ
g(ω)dω≈ 2Kσg(ω0), (4.4)

where Ns is the number of oscillators forming the synchronized cluster.
On the other hand, the distribution of the effective frequencies ω̃, which is related to that

of the natural frequencies ω, is denoted as G(ω̃). G can be conveniently expressed as a sum of
synchronized and desynchronized parts [33]:

G(ω̃)=Gs(ω̃)+Gds(ω̃). (4.5)

The synchronized part is concentrated around frequency ω0, i.e.,

Gs(ω̃)= rδ(ω̃−ω0). (4.6)

The desynchronized part is given by [33]

Gds(ω̃)= g
(
ω0 +

√
(ω̃−ω0)2 + (Kσ)2 ) |ω̃−ω0|√

(ω̃−ω0)2 + (Kσ)2
. (4.7)

We consider the simple case of g being symmetric about its maximum at ω0. If g(ω) is a
Lorentzian,

g(ω)= γ

π

1
(ω−ω0)2 +γ2

, (4.8)

where γ is the half width at half maximum, σ is given by [32], [33]

σ=
{√

1−2γ/K , 2γ≤ K ,
0, 2γ> K .

(4.9)

The distribution G(ω̃) is given by [31]–[33]

G(ω̃)= rδ(ω̃−ω0)+ γ

π

|ω̃−ω0|[
(ω̃−ω0)2 + (Kσ)2 +γ2

]√
(ω̃−ω0)2 + (Kσ)2

. (4.10)

G(ω̃) (=Gs(ω̃)+Gds(ω̃)) is shown in Figure 10 in the case of 2γ/K = 0.5 together with g(ω). In
this figure, γ= 1 and ω0 = 0 are assumed.
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Figure 10. Distribution of the effective frequencies ω̃ when 2γ/K = 0.5, γ= 1, ω0 = 0.

As shown in Figure 10, a sharp population drop in Gds occurs near the frequency of
synchronization (ω0). This seems to reflect the fact that the frequencies of the oscillators
whose natural frequencies are close to ω0 are shifted perfectly to the central frequency to form
a sharp peak, resulting in a rapid population decrease around this peak.

Using K and γ, the parameter r is given by [31–33]

r =
{

(2/π)tan−1 (
K

√
1−2γ/K /γ

)
, 2γ≤ K ,

0, 2γ> K .
(4.11)

The relationship between r and K /γ is illustrated in Figure 11.
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Figure 11. Relationship between r and K /γ.

As shown in Figure 11, when the coupling strength K becomes larger than 2γ, a macroscopic
cluster of mutually entrained oscillators with a common frequency ω0 gradually appears, and
finally coherent rhythmicity (that is, the formation of a fiber fuse) is achieved when K ∼ 10γ.
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5. Relationship between Mutual Entrainment and
Periodic Cavity Interval

Todoroki reported the P0 dependence of Λ in an SMF-28e fiber at λ0 = 1.48 µm [48], [52]. In this
study, we investigated the P0 dependence of Λ on the basis of the population dynamics of
interacting self-oscillators.

The oscillatory motion for ε= 7.5, β= 6.5, and ζ= 0 was calculated using Eq. (2.1) in the two
cases of r ∼ 0 and r ∼ 1. The calculated results are shown in Figures 12 and 13, respectively,
where the perturbed density ρ1 is plotted as a function of time and Φ is the period between the
peaks of the ρ1 values.
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Figure 12. Time dependence of the perturbed density when r ∼ 0 and N = 4. ε= 7.5, β= 6.5, ζ= 0.
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Figure 13. Time dependence of the perturbed density when r ∼ 1 and N = 4. ε= 7.5, β= 6.5, ζ= 0.

In Figure 12, Φ approaches 0 as N →∞. As shown in Figures 12 and 13, Φ in the case of
r ∼ 0 is smaller than that in the case of r ∼ 1.
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The relationship between the period Φ and the cavity interval Λ is given by Eq. (2.3). If the
same Vf value is assumed in the cases of r ∼ 0 (Figure 12) and r ∼ 1 (Figure 13), the increase in
r results in the increase in Λ.

This r is the fraction of the population forming a synchronized cluster among the weakly
coupled oscillators. As shown in Figure 11, when the coupling strength K becomes larger than
the threshold value (KC = 2γ), a macroscopic cluster of mutually entrained oscillators with a
common frequency ω0 gradually appears. Similarly, cavities with a periodic interval Λ owing to
fiber fuse propagation appear when the input laser power P0 exceeds the threshold power Pth

(= 1.3 W [53]). Therefore, we assume the following relationships between the parameters of the
population dynamics and the fiber fuse propagation:

K ←→ P0,

KC(= 2γ)←→ Pth,

r ←→Λ.

The following relationships between them are also assumed:
K
2γ

= P0

Pth
, (5.1)

r = Λ
C

, (5.2)

where C is a constant. By substituting Eqs. (5.1) and (5.2) into Eq. (4.11), the following equation
is derived for Λ:

Λ= Cr =
(
2C
π

)
tan−1

(
2
√

(P0 −Pth)P0

Pth

)
. (5.3)

The relationship between Λ and P0 was investigated using Eq. (5.3), where C = 18.5 µm
was adopted in the calculation. The calculated results are shown in Figure 14. In this figure,
the open circles are the data reported by Todoroki [48], [51].
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Figure 14. Relationship between the interval Λ and the input power P0. The solid line was calculated
using Eq. (5.3). The open circles are the data reported by Todoroki [48], [51].
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As shown in Figure 14, Λ increases abruptly near the threshold power (Pth) and increases
with increasing P0. The Λ values at P0 = 2–5 W satisfy Eq. (5.3). However, with increasing P0,
the Λ values at P0 > 5 W become larger than those calculated using Eq. (5.3).

Todoroki reported that the minimum laser power for fiber fuse initiation was 5.5 W for a
conventional optical fiber (SMF-28e+) at λ0 = 1.48 µm in trials using a fusion splicer when the
arc discharge intensity was the same as that for normal fiber splicing. He also found that all the
trials with pumping at more than 6 W resulted in the initiation of fiber fuse propagation [47]. It
can be considered from these experimental results that the rapid increase in Λ at Pth ≤ P0 ≤ 5 W
shown in Figure 14 corresponds to the first step of the fiber fuse initiation process.

This may be related to the modes of fiber fuse propagation reported by Todoroki [48], [51].
Todoroki classified the damage to the front part of a fiber fuse into three shapes (two spheroids
and a long partially cylindrical cavity) depending on the pump power, and the appearance of
the long partially cylindrical cavity, which is a typical shape of the cavity, was observed at
P0 > 3.5 W [48] or P0 > 2.3 W [51]. As shown in Figure 14, Λ tends to be proportional to P0 at
P0 > 3.5 W. A similar proportional relationship between Λ and P0 was reported by Atkins et
al. [4] and Sun et al. [45]. This behavior means that the cavity formation process changes from
the precursor generation process at P0 < 3.5 W to the fiber fuse propagation process with long
partially cylindrical cavities at P0 > 3.5 W.

In what follows, we attempt to clarify the relationship between Λ and P0 in the stable
initiation process of fiber fuse propagation at P0 > 6 W. It is well known that the fiber-fuse
propagation velocity Vf , which is related to Λ as shown on Eq. (2.3), increases with increasing
input laser power P0 [4], [7], [8], [13], [16–18], [23], [24], [29], [43], [45], [48], [51]. In particular,
Vf tends to be proportional to P0 at P0 > 3.5 W [48]. As shown in Eq. (2.3), the parameter Λ/Vf

equals to the period Φ. The experimentally determined Λ/Vf at P0 of 2–9 W was estimated using
the data reported by Todoroki [48], [51] and the Λ/Vf at P0 of 22 W (7.9 W at 1.48 µm and 14.1 W
at 1.55 µm) was estimated using the data reported by Tsujikawa et al. [54]. The calculated
results are shown in Figure 15.
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Figure 15. Relationship between the parameter Λ/Vf and the input power P0. The open circles are the
data reported by Todoroki [48], [51] and the closed circle is the data reported by Tsujikawa et al. [54].
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As shown in Figure 15, Λ/Vf (or Φ) decreases with increasing P0 and gradually approaches
to a constant value of about 19 µs at P0 > 6 W.

As described above, thermodynamic instability exists in the initiation process at P0 ≈ Pth

and this instability disappears when fiber fuse propagation begins. Thus, the decrease in Φ

(or Λ/Vf ) in the initiation process at P0 < 6 W is considered to correspond to the decrease in
the thermodynamic instability. This instability will gradually decrease with increasing P0 and
disappear at P0 = 6 W, at which fiber fuse propagation starts. This means that the constant
Φ (or Λ/Vf ) of about 19 µs is the Φ of the thermodynamically stable condition of fiber fuse
propagation. As shown in Figure 5, the period Φ, which is equal to the Λ/Vf , increases with
increasing nonlinearity parameter ε. The constant Φ values of 19 µs correspond to ε ∼ 8 as
shown in Figure 5.

In closing, we summarize the relationship between the population dynamics (synchronization
and desynchronization) of interacting oscillators and the fiber fuse initiation, propagation, and
termination processes. Figure 16 shows a schematic view of the relationship between the
population dynamics of interacting oscillators and the fiber fuse processes. In the initiation
process, where thermodynamic instability is very high, a macroscopic cluster of mutually
entrained oscillators with a common frequency ω0 gradually appears and the system
spontaneously synchronizes. In the propagation process, coherent rhythmicity is achieved and
the coherent state is stable. And when the termination process occurs owing to lowering the P0,
thermodynamic instability increases with increasing of time. In this process, desynchronization
of the mutually entrained oscillators occurs and the coherent state becomes unstable.
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Figure 16. Schematic view of the relationship between the population dynamics of interacting oscillators
and the fiber fuse initiation, propagation, and termination processes.

6. Conclusion
The cavity pattern formation and its dynamics of a fiber fuse in a single-mode optical fiber were
studied theoretically. To clarify cavity pattern formation we investigated a nonlinear oscillation
model using the Van der Pol equation. This model was able to phenomenologically explain the
formation of periodic cavities, the cavity shape, and the regularity of the cavity pattern in the
core layer as a result of the relaxation oscillation and cavity compression and/or deformation.
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To clarify the power dependence of the periodic cavity interval, we investigated the
population dynamics of interacting self-oscillators using the Kuramoto model. When the coupling
strength became larger than the threshold value, this model was able to explain the appearance
of a macroscopic cluster of mutually entrained oscillators with a common frequency. Similarly,
cavities with a periodic interval due to fiber fuse propagation appear when the input laser power
P0 exceeds the threshold power Pth. Therefore, we assumed the relationships between the
parameters of the population dynamics and the fiber fuse propagation, and found an equation
describing the power dependence of the periodic cavity interval. The experimentally determined
cavity intervals at Pth ≤ P0 ≤ 5 W, corresponding to the precursor generation process of a fiber
fuse, satisfied this equation. Furthermore, the experimental cavity intervals in the steady state
of fiber fuse propagation at P0 > 6 W can be explained by considering the power dependence of
the propagation velocity of the fiber fuse and the constant period of the Van der Pol oscillator.
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