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1. Introduction

A singularly perturbed delay differential equation is a differential equation in which the
highest order derivative is multiplied by a small parameter and involving at least one delay
term. Actually, the singularly perturbed problems are generally the first approximation of the
considered physical model. Hence in such cases, more realistic model should include some
of the fast and future states of the system and hence, a real system should be modelled by
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differential equations with delay or advance parameter. Such type of equation arises frequently
in the mathematical modelling of various practical phenomena for example, in the modelling of
the human pupil-light reflex, Model of HIV infection, the study of bi-stable devices in digital
electronics, variational problem in control theory; first exit time problem in modelling of
activation of neuronal variability, immune response, evolutionary biology, dynamics of networks
of two identical amplifier, mathematical ecology, population dynamics, the modelling of biological
oscillator and in a variety of models for physiological process.

Lange and Miura [|8,(9], published a series of papers for solving these problems. First started
with problems of the form:

2y (%) + q(x)y(x) + a(x)y'(x — 1) + fx)y(x — 1) = y(x)
with conditions
yx)=¢px), -1<x=<0, y()=y

where q(x), a(x), B(x), ¢(x), w(x) are assumed to be continuously differentiable in [0,/],
and y; [ > 1 are constants independent of ¢ and g(x) > 0. Modified WKB method together
with the matched asymptotic expansions is used to study the above problem. Chakravarthy
and Reddy [16], presented an initial value approach for the solution of singularly perturbed
problems. Rao and Chakravarthy [13,14], constructed a scheme for solving partial differential
difference equations. Salama and Al-Amery [18]], has given an asymptotic method for solving
differential difference equations. Reddy et al. [17], have presented a new scheme for solving
singularly perturbed differential-difference equations. Kanth and Murali [20], described a
simple scheme of a non-linear differential-difference equations. Adilaxmi et al. [1], presented
an initial value technique using exponentially fitted non-standard finite difference method for
singularly perturbed differential-difference equations. Kadalbajoo and Sharma [6,7]], has given
numerical treatment of boundary value problems for second order singularly perturbed delay
differential equations. Pakdemirli [[12], has described application of the perturbation iteration
method to boundary layer type problems. Reddy and Awoke [[15], has described solution of
singularly perturbed differential-difference equations via fitted method. For the more theory of
perturbation problems, one may refer books: Bellman and Cooke [2], Driver [3]], Elsgolts and
Norkin [4], Hale [5], Nayfeh [10], O’'Malley [11]] and Van Dyke [19].

In this paper, a singularly perturbed differential-difference equation boundary value problem
having boundary layer at both the end is examined. To solve such type of problems, a fitted
special finite difference scheme is used. The differential-difference equation is replaced by an
asymptotically equivalent singular perturbation problem using the Taylor’s series expansion
and afterwards fitted special finite difference scheme is applied. To demonstrate the applicability
of this method, three numerical examples are solved and numerical results are presented which
are in agreement with the available/exact results.

2. Description of the Fitted Method
Consider the differential-difference equation
ey"(x) + a(x)y(x — 8) + c(x)y(x) + b(x)y(x +1n) = f(x), O0<x<l1 (1)
with the boundary conditions
yx)=alx), -6<x<0 (2)
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and

y(x)=px), 1<x<1+n, 3)
where 0 < € < 1 is the perturbation parameter, 0 < 6 = O(¢) is the small delay parameter,
0 <71 =0C(e) is the small advanced parameter, a(x), b(x), c(x), f(x), a(x) and B(x) are sufficiently
differentiable in (0,1). If a(x) + b(x) + c(x) < 0 on the interval [0, 1], then the solution of eq.
exhibits boundary layers at both ends of the interval [0,1], whereas it exhibits oscillatory
behaviour a(x) + b(x) + c(x) > 0.

Using Taylor series expansion, in the neighbourhood of x

y(x—8) = y(x) - 8y'(x), (4)

y (x + 17) = y(x)+ny'(x). (5)
Substitute eq. and eq. into eq. (1), we get singularly perturbed ordinary differential
equation

ey"(x) + p(x)y'(x) + q(x)y(x) = £ (x) (6)
with the boundary conditions

¥(0) = a(0) = ¢o, (7

y() =p1)=y1, (8)

where p(x) = b(x)n —a(x)d, g(x) = a(x) + b(x) + c(x), o and y; are constants.

Since 0 < § < 1 and 0 <71 « 1, the transformation from eq. to eq. (6) is admitted. For
more details on the validity of this transformation one can refer Elsgolts and Norkin [4].

Now, we divide the interval [0, 1] into n equal parts with constant mesh length A.

Let 0 =x9,x1,...,%, = 1 be the mesh points, then we have x; =ih, i =0,1,2,...,n. We choose
N such that xy = % Since the problem exhibits two boundary layers across the interval, we
divide the interval [0,1] into two sub intervals [0, 2] and [%, 1]. Clearly, in the interval [0, 1]
the boundary layer will be at the left end i.e. at x =0, and in the interval [%, 1] the boundary
layer will be at right end i.e. at x =1.

2.1 Problem with left end boundary layer in [0,1]
The idea given by Van Veldhuizen to the boundary value problem eq. (6) by considering the
fitted special finite difference scheme for eq. (6) as follows:
. (yz—l 2hy2l +yz+1) o (yz+1h Vi gyé’) ‘g (yz+1 ;yl-l) _r
fori=1,2,...,N-1.
Now, introduce a fitting factor o in the above scheme, eq. (9) as fallows:

9

Yi-1=2yi+yiv1|  (Yier=yi R\ (yiertyi-1)_
05( 72 ) l( h 5 Yi z( 2 )—fz, (10)
Yi-1—2¥i + Yi+1 yisi=yi h[fi=Piyi—qiyi Yivl +Yi-1)\ _ ,
UE( h2 ) ‘( h _5( € - ’( 2 )_f" (11
Substituting y! = #43=2 in the above eq. and simplifying, we get
E0  q; 2¢0 p; PiPivl A eo p; PiPitl g
R e 1 L L I AN i i I
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_fl psz._ (12)

From the theory of singular perturbation, it is known that the solution of eq. (6) to eq. is of
the form (O’Malley [11])

() = yo(x)+—(<Po yoOpe B ED | o(e), (13)

where yo(x) is the solutlon of p(x)y'(x) + qg(x)y(x) = f(x), y(1) = (1) = y1. By taking the Taylor’s
series expansions of p(x) and q(x) about the point 0 and restricting to their first terms, we get

(@) = 0(x) + (o — yo(O)e = 50 1 O(e). (14)

At x = x;, the fitting factor o(p) is to be determined in such a way that the solution of
converges uniformly to the solution of eq. (6) to eq. (8) and which is equivalent to the solution of
eq. (1) to eq. (3). Now multiplying eq. (12) by hand taking limit A — 0, using eq. (14), we get

B 2 _(p 0)((;;(](0) )
_ p(p(0)+5p=(0)(1 - P (15)
B X p2(0)- ) _(P2O- cq0))
p(0) —2+4+e p(0)

where p = E' Arranging eq. in three term recurrence relation, we get system of equations of
N —1 equations.

Eiyi1-Fiyi+Giyiy1=H;, i=12,....N-1, (16)
where pibi1 pip .
_EO' & o E_U & 4 i+§__ . ._8_0' & 12 i+2 q1
Bi=gat g Fim 2t g Py Gim gty g vy Hisfitg pifiny

2.2 Problem with right end boundary layer in [%,1]
For the right end boundary layer in eq. (6), we consider the special second order finite difference
scheme as
E(yi—l_Zyi+yi+1)+ .(yi_yi +hy ) (yz+1+yz
h? U 27" 2
fori=N+1,N+2,...,n—1.
Now, introduce a fitting factor o1 in the above scheme, en. (17) as follows:

)—fi (17)

Yi-1—2yi +Yi+1 (Yi—yi-1  h Yie1t+Yi-1) _ ,

801( h2 ) l( h +2y1) ( 9 ) fl7 (18)
Yi-1—2yi +Yi+1 (yi—yi-x A ([fi=Piyi—qiyi (Yisl ¥ Yi-1) _

80']_( h2 )+pl( A +§( - +ql(T)—fl. (19)

Substituting y! = 2="=1 in the above eq. and simplifying, we get
eocl p; plpz—- ql) (2501 p; PiPi-l ) (80’1 ql)
— -+ + 1= | =+ ——2+ —Diq, :
(h2 R 2 o 2)” KT h 26 2el 4] 2 Yirt
=fi- pzfl__ (20)

Again from the theory of singular perturbation, it is known that the solution of eq. (6) to eq.
is of the form (O’Malley [11]))

1 _[ERW gy,
y(x) = yo(x)+§—;(yl_y0(1))e FEE =309 L0, (21)
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where y(x) is the solution of p(x)y’'(x) + q(x)y(x) = f(x), y(0) = a(0) = @y. By taking the Taylor’s
series expansions of p(x) and g(x) about the point 1 and restricting to their first terms, we get
(2D

)
(@) = o) + (11— yo(1)) e E 5ED L e, 22)

At x = x;, the fitting factor 01(p) is to be determined in such a way that the solution of
converges uniformly to the solution of eq. (6) to eq. (8) and which is equivalent to the solution of
eq. (1) to eq. (3). Now multiplying eq. (20) by A and taking limit 2 — 0, using eq. (22)), we get

p(p()-5p*() (— L4 o )
ol = | (23)

(p 2(1)- £q)y _(p2(1) £q)y
a0 P _94e D

where p = % Arranging eq. in three term recurrence relation, we get system of equations of
n—N —1 equations.

Eiyi_l—Fiyi+Giyi+1:Hi, i=N+ 1,N+2,...,n—1. (24)
T L pi PiP: 901 p; PiPicl h 1 h
eol p; ¢ i~3 Qi gl p; It i—‘ €0 CIL
E;= L + 2 Fj=———14 G,= ,Hi= .
W2 n e ol T e TPty GiT ety Hisfimgpifiy

We have a system of n — 2 equations from both left and right end boundary layer problem with
n + 1 unknowns. From the given boundary conditions, eq. (7) and eq. (8), we get two equations
i.e.

¥(0) = a(0) = ¢o, y(1)=p1)=1y1.
We need one more equation to solve for the unknowns (yg, y1,...,¥,). For this, we consider the
eq. (6) at £ =0 and the point x = xn, we get

pan)y (xn) +qen)y(xn) = f(xn).

Using second order central finite difference formula, we get

DN PN
oh =7 YN- 1—QN3’N+(_E)3’N+1——ICN- (25)

With this eq. (25), we now have n + 1 equations to solve for the unknowns (yg, y1,...,¥,). Using
invariant embedding algorithm also known as Thomas algorithm, we get the solution.

3. Numerical Experiments

In this section, three numerical examples are presented and observed that the solutions obtained
from this method are well agreed with the available/exact solutions.
The exact solution of the differential-difference equation

ey"(x) +a(x)y(x —6) + c(x)y(x) + b(x)y(x +1m) = f(x), O0<x<1
with the boundary conditions y(x) = a(x), -0 <x <0 and y(x) = f(x), 1 <x <1+n with constant

coefficients (i.e. a(x) =a, b(x) =b, c(x)=c, f(x)=f, a(x) = a, B(x) = B are constants) is given by
Lange and Miura [9]

{(1—a—-b-c)exp(mg)—1}exp(mix)

—{(1-a—-b-c)exp(mq)— 1}exp(mox) 1

yix) = (a+b+c)exp(mq)—exp(ms)) * (a+b+c) (26)
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where

(a6 - by)+1/(by—ad)* —4ela+b +c)

mi=

2¢€

(a6~ bn) - /(b —ad)> —4e(a+b +c)

, Mg =

2¢€

Example 1. Consider the differential-difference equation having dual boundary layer

ey"(x) = 2y(x — 6) — y(x) — 2y(x +n) = 1,
with boundary conditions y(0) = 1 and y(1) = 0. The exact solution is given by eq. (26). Results
are shown in Table[I]and [2] and the layer behaviour in Figure [I|and 2|for different values of §

O<x<1

and 7.
12 . . . Xvs (,y ’ y1)| . . i x  Numerical solution Exact solution Solution by [7]
— y(Numerical Solution) 0 1 1 1
P ¥, (Exact Solution) 0.001 0.26926685 0.30868006 0.42984378
0.002 -0.01649051 0.01562950 0.13058599
o8k ] 0.003 -0.12823756 -0.10859463  -0.02648538
0.004 -0.17193689 -0.16125326  -0.10892741
2 0.005 -0.18902576 -0.18357525  -0.15219874
© 08f | 0.100 -0.20000000 -0.20000000  -0.20000000
= 0.300 -0.20000000 -0.20000000  -0.20000000
® 04f 1 0.500 -0.19999999 -0.19999999  -0.19999999
> 0.700 -0.19999999 -0.19999999  -0.19999999
02} 1 0.900 -0.19942061 -0.19940988  -0.19931853
0.995 -0.05067700 -0.05053989  -0.04946047
ol 0.996 -0.04169036 -0.04157408  -0.04065940
0.997 -0.03216288 -0.03207043  -0.03134379
. . . ‘ . . . . . j 0.998 -0.02206201 -0.02199667  -0.02148356
'0'20 01 02 03 04 05 06 07 08 09 1 0.999 -0.01135324 -0.01131861  -0.01104686
X axis 1 0 0 0
Figure 1. 2=0.001, £=0.0001, §=0.07 and n=0.03 Table 1
12 xvs (v, y1) x  Numerical solution Exact solution Solution by [7]
— y(Numerical Solufion} 0 1 1 1
P R R y, (Exact Solution) 0.001 0.42375148 0.64990779 0.66882623
I ] 0.002 0.12422159 0.40195270 0.42904918
08 0.003 -0.03147191 0.22633691 0.25544535
r ] 0.004 -0.11240029 0.10195588 0.12975239
” 0.005 -0.15446629 0.01386221 0.03874794
3 08t . 0.100 -0.20000000 -0.19999999  -0.19999999
> 0.300 -0.20000000 -0.20000000  -0.20000000
'% 04| i 0.500 -0.20000000 -0.20000000  -0.20000000
> 0.700 -0.20000000 -0.20000000  -0.20000000
02| | 0.900 -0.19999999 -0.19999989  -0.19999984
0.995 -0.11871564 -0.10311037  -0.10098645
0 0.996 -0.10267787 -0.08799746  -0.08603757
T 1 0.997 -0.08347578 -0.07052724  -0.06883173
| j 0.998 -0.06048503 -0.05033201  -0.04902819
'0'20\ T 07 03 07 05 0% 07 08 09 0.999 -0.03295811 -0.02698671  -0.02623475
X axis 1 0 0 0
Figure 2. 4=0.001, £¢=0.0001, §=0.07 and 0.06 Table 2
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Example 2. Consider the differential-difference equation having dual boundary layer

ey"(x) +0.25y(x — 8) — y(x) +0.25y(x +n) =1,

0<x<1

with boundary conditions y(0) = 1 and y(1) = 0. The exact solution is given by eq. (26). Results
are shown in Table [3]and [4] and the layer behaviour in Figure [3|and [4]for different values of §

and 7.
1 i i Xvs (‘y ¥1) i i . x  Numerical solution Exact solution Solution by [7]
y(Numerical Solution) 0 1 1 1
y, (Exact Solution) 0.001 0.48061198 0.61695060 0.63026479
08T | 0.002 0.05114527 0.28281015 0.30609763
0.003 -0.30396814 -0.00866619 0.02188247
] 0.004 -0.59760101 -0.26292593  -0.22730456
0.005 -0.84039742 -0.48472099  -0.44578053
0.100 -1.99999998 -1.99999649  -1.99999417
0.300 -1.99999999 -1.99999999  -1.99999999
0.500 -1.99999999 -1.99999977  -1.99999997
0.700 -1.99998602 -1.99996594  -1.99996177
0.900 -1.96176269 -1.94854804  -1.94652875
0.995 -0.35902161 -0.33448484  -0.33127601
0.996 -0.29278472 -0.27239333  -0.26973108
0.997 -0.22387423 -0.20798701  -0.20591628
. . \ . ‘ l . ‘ 0.998 -0.15218222 -0.14117958  -0.13974790
01 02 03 04 05 06 07 08 0.999 -0.07759641 -0.07188153  -0.07113914
xaxis 1 0 1 0
Figure 3. 4=0.001, £=0.0001, §=0.03 and n=.07 Table 3
1 XV (.y’ yh) - : : x  Numerical solution Exact solution Solution by [7]
y(Numerical Solution) 0 1 1 1
""" ¥, (Bxact Solution) | 0.001 0.88360538 0.89217770 0.89105458
0.002 0.77172666 0.78823061 0.78606553
0.003 0.66418864 0.68801947 0.68488917
- 0.004 0.56082290 0.59140999 0.58738705
2 0.005 0.46146757 0.49827273 0.49342573
© 0.100 -1.94264404 -1.92282207  -1.92576223
z . 0.300 -1.99997903 -1.99994892  -1.99995453
s 0.500 -1.99999999 -1.99999996  -1.99999997
” 1 0.700 -1.99999999 -1.99999999  -1.99999999
0.900 -1.99999998 -1.99999766  -1.99999848
0.995 -1.22693161 -0.98981399  -1.01843802
0.996 -1.06506734 -0.84195062  -0.86827690
0.997 -0.86931209 -0.67244413  -0.69514386
‘ l . . . ) ) . 0.998 -0.63256981 -0.47812656  -0.49552461
02 03 04 05 06 07 08 09 1 0.999 -0.34625867 -0.25536626  -0.26536725
X axis 1 0 0 0
Figure 4. =0.001, £=0.0001, §=0.07 and n=0.03 Table 4
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Example 3. Consider the differential-difference equation having dual boundary layer
ey (x)—y(x—6)—y(x)-3y(x+n)=1, 0<x<1
with boundary conditions y(0) = 1 and y(1) = 0. The exact solution is given by eq. (26). Results

are shown in Table [5]and [6] and the layer behaviour in Figure 5 and [6|for different values of §
and 7.

1 . . .x ve (‘y, y1). . . x Numerical solution Exact solution
———— y(Numerical Solution) 0 1 1
S i Y, (ExactSolution) || 0.001 0.80225133 0.83807971
' 0.002 0.63708978 0.69800791
0.003 0.49914529 0.57683650
06t 1 0.004 0.38393275 0.47201518
2 0.005 0.28770615 0.38133777
© 0.100 -0.19999998 -0.19999939
R 1 0.300 -0.20000000 -0.20000000
i 0.500 -0.19999999 -0.20000000
02 | 0.700 -0.20000000 -0.20000000
0.900 -0.20000000 -0.20000000
0.995 -0.19241104 -0.16435629
0 1 0.996 -0.18540004 -0.14967401
. 0.997 -0.17191198 -0.12894384
s Vo 0.998 -0.14596306 -0.09967454
0 01 02 03 04 05 08 07 08 09 1 0.999 -0.09604141 -0.05834870
X axis 1 0 0
Figure 5. 2=0.001, £=0.0001, §=0.07 and n=0.03 Table 5
1 , , . Xvs (,y‘ y1) . , , , x Numerical solution Exact solution
y(Numerical Solution) 0 1 1
¥, (Exact Solution) 0.001 0.88103175 0.88580490
081 I 0.002 0.77385804 0.78247690
0.003 0.67730955 0.68898186
06 | | 0.004 0.59033290 0.60438405
o 0.005 0.51197914 0.52783679
s 0.100 -0.19996493 -0.19994552
> 04 1 0.300 -0.19999999 -0.19999999
E 0.500 -0.20000000 -0.20000000
> o | 0.700 -0.20000000 -0.20000000
0.900 -0.20000000 -0.20000000
0.995 -0.19202193 -0.18358300
of 1 0.996 -0.18480417 -0.17293294
0.997 -0.17105652 -0.15537396
0.998 -0.14487138 -0.12642411
O T 02 05 04 05 06 07 o8 o8 0.999 -0.09499655 -0.07869386
X axis 1 0 0
Figure 6. 2=0.001, £=0.0001, §=0.08 and =0.04 Table 6
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4. Discussion and Conclusions

We have presented the method for solving singularly perturbed differential-difference equations
with dual boundary layer. Firstly, differential-difference equation converted into ordinary
differential equation by using Taylor’s expansion, afterwards we applied exponentially fitted
special finite difference scheme and obtained the value of fitting factor from the theory of singular
perturbations. We have implemented this method on three standard examples. Numerical, exact
results and layer behaviour are presented in their respective figures and tables for different
values of the parameters. It can be observed that our numerical solutions approximate the exact
solutions very well which shows the efficiency of this method.
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