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Abstract. A topological index is a numeric value that can be used to characterize some property of
the graph representing a molecule. In this article, we compute multiplicative connectivity indices
namely, multiplicative version of first Zagreb index (Π∗

1 ), second multiplicative Zagreb index (Π2), first
and second multiplicative hyper-Zagreb index (HΠ1,HΠ2), general first and second multiplicative
Zagreb index (MZa

1 , MZa
2 ), multiplicative sum-connectivity index (XΠ), multiplicative product-

connectivity index (χΠ), multiplicative atom-bond connectivity index (ABCΠ) and multiplicative
geometric-arithmetic index (GAΠ) for tri-hexagonal boron nanotube, tri-hexagonal boron nanotorus
and tri-hexagonal boron-α nanotorus.
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1. Introduction
Mathematical chemistry is a branch of theoretical chemistry in which chemical structure can be
predicted by using different mathematical tools. Chemical graph theory is one of the tool, which
implements graph theory to study mathematical modeling of chemical aspects. A topological
index in the chemical graph theory is used to predict bioactivity of the molecular graphs
of chemical compounds. Molecular graphs models the chemical structures of molecules and
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molecular compounds by considering atoms as vertices and the chemical bonds between the
atoms as edges.

We consider G(V ,E) to be finite, undirected, simple graph where V and E be the sets
containing vertices and edges of G, respectively. Number of elememts in V is called the order
of G, denoted as |V | and the number of elements in E is called the size of G, denoted as |E|.
The degree of a vertex v is denoted by dGv. Let uv represent an edge between the two vertices
u and v. For undefined terminologies we refer to [1].

A topological index is a numeric value mathematically derived from the graph representing
a molecule. Topological indices are of two main categories, one depends on vertex distance and
the other depends on vertex degree.

In 2010, Todeshine and Consonni [7] gave two new vertex invariants which are

Π1(G)=Πv∈V dGv2 and Π2(G)=Πuv∈E(dGu×dGv).

Definition 1.1 ([7]). Multiplicative version of first and Second Zagreb index of G is

Π∗
1(G)=Πuv∈E(dGu+dGv), Π2(G)=Πuv∈E(dGu×dGv).

Definition 1.2 ([3]). First and second multiplicative hyper-Zagreb index of G is

HΠ1(G)=Πuv∈E(dGu+dGv)2, HΠ2(G)=Πuv∈E(dGu×dGv)2 .

Definition 1.3 ([4]). General first and second multiplicative Zagreb index of G is

MZa
1 (G)=Πuv∈E(dGu+dGv)a, MZa

2 (G)=Πuv∈E(dGu×dGv)a .

Definition 1.4 ([2]). Multiplicative sum-connectivity index of G is

XΠ(G)=Πuv∈E
1√

dGu+dGv
.

Definition 1.5 ([2]). Multiplicative product-connectivity index of G is

χΠ(G)=Πuv∈E
1√

dGu×dGv
.

Definition 1.6 ([2]). Multiplicative atom-bond connectivity index G is

ABCΠ(G)=Πuv∈E

√
dGu+dGv−2

dGu×dGv
.

Definition 1.7 ([2]). Multiplicative geometric-arithmetic index of G is

GAΠ(G)=Πuv∈E
2
√

dGu×dGv
dGu+dGv

.

Boron nanotubes has remarkable qualities like, at high temperatures it has high resistance
to oxidation, high chemical stability and are a stable wide band-gap semiconductor. Because of
their special properties it can be used for applications at high temperatures and also in corrosive
environments such as batteries, high speed machines as solid lubricant, super capacitors
and fuel cells. The stability, mechanical and electronic properties has been discussed in [5,9].
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In 2009, Wang et al. [8] gave a type of boron nanotube contains triangles, hexagons and was
called as tri-hexagonal boron nanotube. The three dimensional image of this is given in Figure 1.

Figure 1. Three-dimensional perception of Tri-Hexagonal boron nanotube — C3C6(H)[p, q].

In this paper, we have computed all the above defined multiplicative topological indices for
three different nanotubes: tri-hexagonal boron nanotube, tri-hexagonal boron nanotorus and
tri-hexagonal boron-α nanotorus.

2. Main Results
In this section, we consider Tri-Hexagonal boron nanotube represented as C3C6(H)[p, q],
Tri-Hexagonal boron nanotorus represented as THBC3C6[p, q] and Tri-Hexagonal boron-α
nanotube represented as THBAC3C6[p, q]. Recently, ABC, ABC4,GA and GA5 indices are
studied for tri-hexagonal boron nanotori [6], motivated by which we will compute multiplicative
connectivity indices of C3C6(H)[p, q], THBC3C6[p, q] and THBAC3C6[p, q].

In each case edge set of the corresponding graph is partitioned according to unordered
degree pairs of the end vertices of edges in the graph are used to find multiplicative connectivity
indices.

2.1 Tri-Hexagonal boron nanotube — C3C6(H)[p, q]

In this section, we calculate multiplicative connectivity indices of C3C6(H)[p, q], here p
indicates the count of hexagons in a column and q indicates the count of hexagons in a row of
the two-dimensional molecular graph of G = C3C6(H)[p, q] nanotube as given in Figure 2. Here
|V | = 8pq and |E| = q(18p−1).
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Figure 2. A two-dimensional molecular graph of Tri-Hexagonal boron nanotube — C3C6(H)[p, q].

Theorem 2.1. For the graph G = C3C6(H)[p, q],

i. Π∗
1(G)= (259652)2pq(85

96

)q

ii. Π2(G)= (216510)2pq(36

48

)q

iii. HΠ1(G)= (259652)4pq(85

96

)2q

iv. HΠ2(G)= (216510)4pq(36

48

)2q

v. MZa
1 (G)= (259652)2apq(85

96

)aq

vi. MZa
2 (G)= (216510)2apq(36

48

)aq

vii. XΠ(G)= (259652)−pq
(

85

96

)− q
2

viii. χΠ(G)= (216510)−pq
(

36

48

)− q
2

ix. ABCΠ(G)= (73p6
105

)2pq(p2
21

73
p

3

)q

x. GAΠ(G)= (4
p

5
9

)12pq(9
p

3
16

)6q

Proof. Let G = C3C6(H)[p, q]. Edge set is partitioned into four types, based on degrees of end
vertices of edges:

E1 = E(3,5) = {uv ∈ E | dGu = 3 and dGv = 5},

E2 = E(4,4) = {uv ∈ E | dGu = dGv = 4},

E3 = E(4,5) = {uv ∈ E | dGu = 4 and dGv = 5}

E4 = E(5,5) = {uv ∈ E | dGu = dGv = 5}.

Journal of Informatics and Mathematical Sciences, Vol. 11, Nos. 3-4, pp. 313–322, 2019



Multiplicative Connectivity Indices of Tri-Hexagonal Boron Nanotube and Nanotori: G. R. Roshini et al. 317

The number of edges in E1; E2; E3 and E4 are 6q; q(2p−1); 6q(2p−1) and 4pq, respectively.
Now Π∗

1 , Π2, HΠ1, HΠ2, MZa
1 , MZa

2 , XΠ, χΠ, ABCΠ and GAΠ of G is computed.

i. Π∗
1(G)=Πuv∈E(dGu+dGv)

=Πuv∈E1(dGu+dGv)×Πuv∈E2(dGu+dGv)×Πuv∈E3(dGu+dGv)

×Πuv∈E4(dGu+dGv)

=Πuv∈E1(8)×Πuv∈E2(8)×Πuv∈E3(9)×Πuv∈E4(10)

= 86q ×8q(2p−1) ×96q(2p−1) ×104pq

∴ Π∗
1(G)= (259652)2pq

(85

96

)q

ii. Π2(G)=Πuv∈E(dGu×dGv)

=Πuv∈E1(dGu×dGv)×Πuv∈E2(dGu×dGv)×Πuv∈E3(dGu×dGv)

×Πuv∈E4(dGu×dGv)

=Πuv∈E1(15)×Πuv∈E2(16)×Πuv∈E3(20)×Πuv∈E4(25)

= 156q ×16q(2p−1) ×206q(2p−1) ×254pq

∴ Π2(G)= (216510)2pq
(36

48

)q

iii. HΠ1(G)=Πuv∈E(dGu+dGv)2

=Πuv∈E1(dGu+dGv)2 ×Πuv∈E2(dGu+dGv)2 ×Πuv∈E3(dGu+dGv)2

×Πuv∈E4(dGu+dGv)2

=Πuv∈E1(8)2 ×Πuv∈E2(8)2 ×Πuv∈E3(9)2 ×Πuv∈E4(10)2

= 82(6q) ×82q(2p−1) ×92(6q(2p−1)) ×102(4pq)

∴ HΠ1(G)= (259652)4pq
(85

96

)2q

iv. HΠ2(G)=Πuv∈E(dGu×dGv)2

=Πuv∈E1(dGu×dGv)2 ×Πuv∈E2(dGu×dGv)2 ×Πuv∈E3(dGu×dGv)2

×Πuv∈E4(dGu×dGv)2

=Πuv∈E1(15)2 ×Πuv∈E2(16)2 ×Πuv∈E3(20)2 ×Πuv∈E4(25)2

= 152(6q) ×162q(2p−1) ×202(6q(2p−1)) ×252(4pq)

∴ HΠ2(G)= (216510)4pq
(36

48

)2q

v. MZa
1 (G)=Πuv∈E(dGu+dGv)a

=Πuv∈E1(dGu+dGv)a ×Πuv∈E2(dGu+dGv)a ×Πuv∈E3(dGu+dGv)a

×Πuv∈E4(dGu+dGv)a

=Πuv∈E1(8)a ×Πuv∈E2(8)a ×Πuv∈E3(9)a ×Πuv∈E4(10)a

= 8a(6q) ×8aq(2p−1) ×9a(6q(2p−1)) ×10a(4pq)
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∴ MZa
1 (G)= (259652)2apq

(85

96

)aq

vi. MZa
2 (G)=Πuv∈E(dGu×dGv)a

=Πuv∈E1(dGu×dGv)a ×Πuv∈E2(dGu×dGv)a ×Πuv∈E3(dGu×dGv)a

×Πuv∈E4(dGu×dGv)a

=Πuv∈E1(15)a ×Πuv∈E2(16)a ×Πuv∈E3(20)a ×Πuv∈E4(25)a

= 15a(6q) ×16aq(2p−1) ×20a(6q(2p−1)) ×25a(4pq)

∴ MZa
2 (G)= (216510)2apq

(36

48

)aq

vii. XΠ(G)=Πuv∈E
1√

dGu+dGv

=Πuv∈E1(dGu+dGv)−
1
2 ×Πuv∈E2(dGu+dGv)−

1
2

×Πuv∈E3(dGu+dGv)−
1
2 ×Πuv∈E4(dGu+dGv)−

1
2

=Πuv∈E1(8)−
1
2 ×Πuv∈E2(8)−

1
2 ×Πuv∈E3(9)−

1
2 ×Πuv∈E4(10)−

1
2

= 8− 1
2 (6q) ×8− q

2 (2p−1) ×9− 1
2 (6q(2p−1)) ×10− 1

2 (4pq)

∴ XΠ(G)= (259652)−pq
(85

96

)− q
2

viii. χΠ(G)=Πuv∈E
1√

dGu×dGv

=Πuv∈E1(dGu×dGv)−
1
2 ×Πuv∈E2(dGu×dGv)−

1
2

×Πuv∈E3(dGu×dGv)−
1
2 ×Πuv∈E4(dGu×dGv)−

1
2

=Πuv∈E1(15)−
1
2 ×Πuv∈E2(16)−

1
2 ×Πuv∈E3(20)−

1
2 ×Πuv∈E4(25)−

1
2

= 15− 1
2 (6q) ×16− q

2 (2p−1) ×20− 1
2 (6q(2p−1)) ×25− 1

2 (4pq)

∴ χΠ(G)= (216510)−pq
(36

48

)− q
2

ix. ABCΠ(G)=Πuv∈E

√
dGu+dGv−2

dGu×dGv

=Πuv∈E1

√
dGu+dGv−2

dGu×dGv
×Πuv∈E2

√
dGu+dGv−2

dGu×dGv

×Πuv∈E3

√
dGu+dGv−2

dGu×dGv
×Πuv∈E4

√
dGu+dGv−2

dGu×dGv

=Πuv∈E1

√
6
15

×Πuv∈E2

√
6

16
×Πuv∈E3

√
7

20
×Πuv∈E4

√
8

25

=
(√ 6

15

)6q
×

(√ 6
16

)q(2p−1)
×

(√ 7
20

)6q(2p−1)
×

(√ 8
25

)4pq
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∴ ABCΠ(G)=
(73p6

105

)2pq(p2
21

73
p

3

)q

x. GAΠ(G)=Πuv∈E
2
√

dGu×dGv
dGu+dGv

=Πuv∈E1

2
√

dGu×dGv
dGu+dGv

×Πuv∈E2

2
√

dGu×dGv
dGu+dGv

×Πuv∈E3

2
√

dGu×dGv
dGu+dGv

×Πuv∈E4

2
√

dGu×dGv
dGu+dGv

GAΠ(G)=Πuv∈E1

2
p

15
8

×Πuv∈E2(1)×Πuv∈E3

2
p

20
9

×Πuv∈E4(1)

=
(2

p
15

8

)6q
× (1)q(2p−1) ×

(2
p

20
9

)6q(2p−1)
× (1)4pq

∴ GAΠ(G)=
(4

p
5

9

)12pq(9
p

3
16

)6q

which is the required result.

2.2 Tri-Hexagonal boron nanotorus — THBC3C6[p, q]

In this section, we calculate multiplicative connectivity indices of THBC3C6[p, q], here p
indicates the count of hexagons in a column and q indicates the count of hexagons in a row of
the two-dimensional molecular graph of G = THBC3C6[p, q] nanotorus as given in Figure 3.
Here |V | = 8pq and |E| = 18pq.

Theorem 2.2. For the graph G = THBC3C6[p, q],

i. Π∗
1(G)= (259652)2pq

ii. Π2(G)= (4455)4pq

iii. HΠ1(G)= (259652)4pq

iv. HΠ2(G)= (4455)8pq

v. MZa
1 (G)= (259652)2apq

vi. MZa
2 (G)= (4455)4apq

vii. XΠ(G)= (259652)−2pq

viii. χΠ(G)= (4455)−4pq

ix. ABCΠ(G)= (73p6
105

)2pq

x. GAΠ(G)= (4
p

5
9

)12pq
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Figure 3. A two-dimensional molecular graph of Tri-Hexagonal boron nanotorus — THBC3C6[p, q].

Proof. Let G = THBC3C6[p, q]. Edge set is partitioned into three types based on degrees of end
vertices of edges:

E1 = E(4,4) = {uv ∈ E | dGu = dGv = 4}, E2 = E(4,5) = {uv ∈ E | dGu = 4 and dGv = 5},
E3 = E(5,5) = {uv ∈ E | dGu = dGv = 5}.

The number of edges in E1; E2 and E3 are 2pq; 12pq and 4pq, respectively.

Similar to the above theorem we can obtain the required results.

2.3 Tri-Hexagonal boron-α nanotorus — THBAC3C6[p, q]

In this section, we calculate multiplicative connectivity indices of THBAC3C6[p, q], here p
indicates the count of rows and q indicates the count of columns of the 2D molecular graph of
G = THBAC3C6[p, q] nanotorus as given in Figure 4. Here |V | = 4pq/3 and |E| = 7pq/2.

Theorem 2.3. For the graph G = THBAC3C6[p, q],

i. Π∗
1(G)= (

p
10

3
112)pq

ii. Π2(G)= (5562)pq

iii. HΠ1(G)= (
p

10
3
112)2pq

iv. HΠ2(G)= (5562)2pq

v. MZa
1 (G)= (

p
10

3
112)apq

vi. MZa
2 (G)= (5562)apq

vii. XΠ(G)= (
p

10
3
112)−pq

viii. χΠ(G)= (5562)−pq

ix. ABCΠ(G)= [(p2
5

) 5
2 ×3

]pq

x. GAΠ(G)= (2
p

30
11

)2pq
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Figure 4. A two-dimensional molecular graph of Tri-Hexagonal boron-α nanotorus — THBAC3C6[p, q].

Proof. Let G = THBAC3C6[p, q]. Edge set is partitioned into two types based on degrees of end
vertices of edges:

E1 = E(5,5) = {uv ∈ E | dGu = dGv = 5}, E2 = E(5,6) = {uv ∈ E | dGu = 5 and dGv = 6}.

The number of edges in E1 and E2 are 3pq/2 and 2pq, respectively.

Similar to the first theorem we can obtain the required results.

3. Conclusion
Topological indices have their own significance in the study of chemical graph theory. In this
study, we compute various degree based multiplicative topological indices of tri-hexagonal boron
nanotube and tri-hexagonal boron nanotori.
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