
Journal of Informatics and Mathematical Sciences
Vol. 12, No. 1, pp. 1–14, 2020
ISSN 0975-5748 (online); 0974-875X (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/jims.v12i1.1088

Research Article

Right Semi-Tensor Product for Matrices Over
a Commutative Semiring
Pattrawut Chansangiam
Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang,
Bangkok 10520, Thailand
pattrawut.ch@kmitl.ac.th

Abstract. This paper generalizes the right semi-tensor product for real matrices to that for matrices
over an arbitrary commutative semiring, and investigates its properties. This product is defined for
any pair of matrices satisfying the matching-dimension condition. In particular, the usual matrix
product and the scalar multiplication are its special cases. The right semi-tensor product turns out to
be an associative bilinear map that is compatible with the transposition and the inversion. The product
also satisfies certain identity-like properties and preserves some structural properties of matrices. We
can convert between the right semi-tensor product of two matrices and the left semi-tensor product
using commutation matrices. Moreover, certain vectorizations of the usual product of matrices can be
written in terms of the right semi-tensor product.

Keywords. Right semi-tensor product; Kronecker product; Commutative semiring; Vector operator;
Commutation matrix

MSC. 15A69; 15B33; 16Y60

Received: March 17, 2019 Accepted: August 16, 2019

Copyright © 2020 Pattrawut Chansangiam. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

1. Introduction
The theory of matrices whose entries come from a ring-like structure such as a (commutative)
semiring is of interest (see e.g. [16,21,22,25]). Applications of this theory arise in many areas,
including combinatorics, optimization, operation research, information sciences, and control
engineering (see e.g. [14,17,18,24]). From the prospective of scientific computing, a rectangular
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matrix is a two-dimensional array for stacking data, and a matrix product is a way to produce
a new data. Certain matrix products have been investigated for matrices over a commutative
semiring, e.g. tensor product [23], box product [3], Hadamard product [5], and block Hadamard
product [5].

The left semi-tensor product n, introduced by D. Cheng [6], is a generalization of the usual
matrix product; e.g. [7, 8, 10]. The left semi-tensor product of two real matrices A and B of
dimensions m×n and p× q is defined when the pair (A,B) satisfies the matching-dimension
condition, i.e. n divides p or p divides n. In particular, we have AnB = AB when n = p. This
product has a strong relationship to the tensor product, and thus its name. We can apply the
left semi-tensor product to treat multi-dimensional data and to transform certain nonlinear
problems into linear ones. This matrix product has several applications in mathematical logic,
abstract algebra, Boolean networks and so on (see e.g. [8, 9, 11, 12, 20, 24]). Recently, the left
semi-tensor product of matrices over an arbitrary commutative semiring was invesigated in [4].
In this case, the product is associative and satisfies certain identity-like properties. Moreover, it
is compatible with certain matrix operations, namely, the addition, the scalar multiplication,
the transposition, and the inversion.

The right semi-tensor product, introduced by D. Cheng [8], is another generalization of
the usual matrix product. The right semi-tensor product is naturally defined through certain
formulas related to tensor products.

In the present paper, we provide a natural definition of the right semi-tensor product
for matrices over a commutative semiring satisfying the matching-dimension condition. This
definition is given in terms of a certain formula involving the tensor product (see Section 3).
Then, we show that this matrix product is associative, bilinear and satisfies identity-like
properties. Similar to the usual product, this product is also compatible with the transposition,
the inversion, the tensor product, and traces. After that, we discuss relations of this product to
certain operations for data rearrangement, namely, row/column vector operators and swapping
operators (commutation matrices) (see Section 4).

2. Preliminaries
In this section, we supply preliminaries on matrices over a commutative semiring, the tensor
product, and the left semi-tensor product.

2.1 Matrices Over a Commutative Semiring
Zimmerman [26], and Golan [17] introduced the following definition.

Definition 1. A commutative semiring is a 5-tuple (L,+, ·,0,1) consisting of a set L with two
distinguish elements 0 and 1 together with two binary operations, called the addition (+) and
the multiplication (·), such that

(i) (L,+,0) is a commutative monoid with 0 ·a = 0 for all a ∈ L;

(ii) (L, ·,1) is a commutative monoid;

(iii) the multiplication is distributive over the addition.
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The sets [0,∞), Zn, and every field are commutative semirings with respect to usual
operations. The Cartesian product of two commutative semirings is again a commutative
semiring with respect to pointwise operations.

Example 1. More interesting examples of commutative semirings are as follows:

(i) the fuzzy algebra [0,1] under the max/min operations (see e.g. [19]).

(ii) the nonnegative integers under the operations of gcd (greatest common divisor) and lcm
(least common multiple).

(iii) the schedule algebra (or max-plus algebra) R∪ {−∞} under the max operation and the
addition (see e.g. [1,15]).

(iv) the extended positive half-line [0,∞] under the max/min operations.

Example 2. Recall that an MV-algebra (see e.g. [2,13]) is a 6-tuple (L,⊕,¯,¬,0,1) consisting of
a set L with two distinct elements 0,1 ∈ L together with two binary operations ⊕ and ¯, and a
unary operation ¬ on L such that the following properties hold for all x, y, z ∈ L:

(x⊕ y)⊕ z = x⊕ (y⊕ z), x⊕ y= y⊕ x, x⊕0= x, x⊕1= 1,

¬¬x = x, ¬0= 1, x¯ y=¬(¬x⊕¬y), ¬(¬x⊕ y)⊕ y=¬(¬y⊕ x)⊕ x.

We put x∨ y = (x¯¬y)⊕ y and x∧ y = (x⊕¬y)¯ y for each x, y ∈ L. Then (L,∨,¯,0,1) and
(L,∧,⊕,1,0) are commutative semirings.

Throughout this paper, let S be a commutative semiring. For each m,n ∈ N, denote by
Mm,n(S) the set of m-by-n matrices over S. We use Rowi (A) for the ith row of a matrix A
and Coli (A) for the ith column of A. The existence of 0 and 1 allows us to define the identity
matrix, denoted by I or In for the identity matrix of size n×n. We define the addition, the
scalar multiplication, the usual multiplication, the transposition, and the trace for matrices
as in the usual ways for real matrices. It turns out such matrix operations satisfy usual
properties for those of real matrices, except for properties involving additive/multiplicative
inverses. In particular, we have:

Proposition 1 ([22]). If A,B ∈Mn,n(S) are such that AB = In, then BA = In.

A matrix A ∈ Mn,n(S) is said to be invertible if there is a matrix B ∈ Mn,n(S) such that
AB = In = BA, or equivalently, AB = In (by Proposition 1). If such B exists, it is uniquely
determined, and we write B = A−1. A matrix A ∈Mn,n(S) is said to be similar to B ∈Mn,n(S) if
there is an invertible matrix S such that S−1AS = B, written A ∼ B. A matrix A ∈Mn,n(S) is
said to be orthogonal if AT A = In = AAT , or equivalently, AT A = In.

The following convention will be often used in the paper.

Definition 2. Let A ∈Mm,n(S) and B ∈Mp,q(S). If n = pt for some t ∈N, then we write A Ât B
or A Â B. If nt = p for some t ∈ N, we write A ≺t B or A ≺ B. In both cases, we say that the
ordered pair (A,B) satisfies the matching-dimension condition.
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2.2 The Tensor Product of Matrices Over a Commutative Semiring
Definition 3. The tensor product or the Kronecker product of A = [ai j] ∈ Mm,n(S) and
B ∈Mp,q(S) is defined by A⊗B = [

ai jB
]

i j ∈Mmp,nq(S). That is, each (i, j)th block of A⊗B is
given by ai jB for each i, j.

Fundamental properties of the tensor product are listed below.

Lemma 1 ([23]). The following properties hold for all matrices over S with appropriate sizes:

1. A⊗ (B+C)= A⊗B+ A⊗C and (B+C)⊗ A = B⊗ A+C⊗ A,

2. (kA)⊗B = k(A⊗B)= A⊗ (kB) for any k ∈S,

3. (A⊗B)T = AT ⊗BT ,

4. (A⊗B) (C⊗D)= (AC)⊗ (BD),

5. if A and B are invertible, then A⊗B is invertible with (A⊗B)−1 = A−1 ⊗B−1.

2.3 The Left Semi-Tensor Product of Matrices Over a Commutative Semiring
First, we consider the left semi-tensor product of a row vector X ∈M1,m(S) and a column vector
Y ∈Mp,1(S).

(i) For the case X Ât Y , we split X into p equal-size blocks as
(
X1, X2, . . . , X p)

, such that
X i ∈M1,t(S) for all i = 1, . . . , p. We define

X nY =
p∑

i=1
yi X i ∈ M1,t(S). (1)

(ii) For the case X ≺t Y , we split Y into m equal-size blocks as
(
Y 1,Y 2, . . . ,Y m)

, such that
Y i ∈Mt,1(S) for all i = 1, . . . ,m. We define

X nY =
m∑

i=1
xiY i ∈ Mt,1(S). (2)

Definition 4. Let A ∈ Mm,n(S) and B ∈ Mp,q(S) be such that the pair (A,B) satisfies the
matching-dimension condition. The left semi-tensor product of A and B is defined as

AnB =


Row1(A)nCol1(B) Row1(A)nCol2(B) · · · Row1(A)nColq(B)

Row2(A)nCol1(B) Row2(A)nCol2(B) · · · Row2(A)nColq(B)
...

... . . . ...
Rowm(A)nCol1(B) Rowm(A)nCol2(B) · · · Rowm(A)nColq(B)

 .

One of the most remarkable properties of the left semi-tensor product is the following:

Proposition 2 ([4]). If A ∈Mm,n(S) and B ∈Mnt,q(S), then AnB = (A⊗ I t)B.
If A ∈Mm,nt(S) and B ∈Mn,q(S), then AnB = A(B⊗ I t).

This proposition establishes a strong relation between the tensor product and the left
semi-tensor product. Thus it justifies the name “semi-tensor product".
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Proposition 3 ([4]). Let A ∈Mm,n(S), B ∈Mp,q(S), X ∈Mn,1(S), Y ∈Mq,1(S), R ∈M1,m(S)
and S ∈M1,p(S). Then

AX nBY = (A⊗B)(X nY ), RAnSB = (RnS)(B⊗ A).

3. Fundamentals Properties of the Right Semi-Tensor Product of
Matrices Over a Commutative Semiring

In this section, we define the right semi-tensor product of matrices over a commutative semiring
for any pair of matrices that satisfied the matching dimension condition. Then, we investigate
its properties related to matrix operations.

From Proposition 2, it is natural to define the right semi-tensor product as follows.

Definition 5. We define the right semi-tensor product of A ∈Mm,n(S) and B ∈Mnt,q(S) by

AoB = (I t ⊗ A)B ∈Mmt,q(S).

When A ∈Mm,nt(S) and B ∈Mn,q(S), its right semi-tensor product is defined by

AoB = A(I t ⊗B) ∈Mm,qt(S).

Remark 1. If X ∈ Mn,1(S) and Y ∈ Mq,1(S) are column vectors, then X oY = Y ⊗ X . If
R ∈M1,m(S) and S ∈M1,p(S) are row vectors, then X oY = X ⊗Y .

Remark 2. Explicit formulas of the right semi-tensor product between a row vector and a
column vector are as follows:
For the case that A ∈M1,n(S) and B ∈Mnt,1(S), using block-matrix multiplication we have

AoB = (I t ⊗ A)B =

A · · · 0
... . . . ...
0 · · · A


B1

...
Bt

 =

AB1

...
ABt

 ,

here each block Bi consists of n rows of B.
For the case that A ∈M1,nt(S) and B ∈Mn,1(S), we have

AoB = A(I t ⊗B) = [
A1 · · · At]B · · · 0

... . . . ...
0 · · · B

 = [
A1B · · · AtB

]
.

Remark 3. We shall compare Definition 4 to Definition 5. First, consider A ∈ Mm,n(S) and
B ∈Mnt,q(S) in which

B =

B1
1 · · · B1

q... . . . ...
Bt

1 · · · Bt
q

 ,

where Bi
j ∈Mn,1(S) for each i, j. Then

AoB = (I t ⊗ A)B =
A · · · 0

... . . . ...
0 · · · A


B1

1 · · · B1
q... . . . ...

Bt
1 · · · Bt

q


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=



Row1(A)B1
1 · · · Row1(A)B1

q... . . . ...
Rowm(A)B1

1 · · · Rowm(A)B1
q... . . . ...

Row1(A)Bt
1 · · · Row1(A)Bt

q... . . . ...
Rowm(A)Bt

1 · · · Rowm(A)Bt
q


.

Now, consider the case that A ∈Mm,nt(S) and B ∈Mn,q(S). We have

AoB = A(I t ⊗B)

=

A1
1 · · · A1

q
... . . . ...

At
1 · · · At

q


B · · · 0

... . . . ...
0 · · · B



=

Row1(A)oB
...

Rowm(A)oB



=

Row1(A)oCol1(B) · · · Row1(A)oColq(B)
... . . . ...

Rowm(A)oCol1(B) · · · Rowm(A)oColq(B)

 .

Remark 4. If A ∈Mm,n(S) and B ∈Mn,q(S), then AoB = AB. If k ∈S and A ∈Mm,n(S), then

[k]o A = (Im ⊗ [k])A = kIm A = kA.

Thus, the right semi-tensor product includes the conventional product and the scalar
multiplication as special cases.

The next result is a parallel result of Proposition 3. Its shows relations between the left/right
semi-tensor products, the tensor product, and the usual product.

Proposition 4. Let A ∈Mm,n(S), B ∈Mp,q(S), X ∈Mn,1(S), Y ∈Mq,1(S), R ∈M1,m(S) and
S ∈M1,p(S). Then

AX oBY = (B⊗ A)(X oY )

RAoSB = (RoS)(A⊗B).

Proof. Using Remark 1 and Proposition 3, we have

AX oBY = BY ⊗ AX = (B⊗ A)(Y ⊗ X ) = (B⊗ A)(X oY ),

RAoSB = RA⊗SB = (RoS)(A⊗B) = (RoS)(A⊗B).

Theorem 1. The right semi-tensor product is associative.

Proof. We consider four cases as follows.
Case 1: A Â B Â C, let A ∈Mr,sp(S), B ∈Mp,qm(S) and C ∈Mm,n(S).

Journal of Informatics and Mathematical Sciences, Vol. 12, No. 1, pp. 1–14, 2020



Right Semi-Tensor Product for Matrices over a Commutative Semiring: P. Chansangiam 7

Using Lemma 1, we obtain

(AoB)oC = [A(Is ⊗B)]oC

= A(Is ⊗B)(Isq ⊗C)

= A(Is ⊗B)(Is ⊗ Iq ⊗C)

= A[(IsIs)⊗B(Iq ⊗C)]

= A[Is ⊗ (BoC)]

= Ao (BoC).

Case 2: A ≺ B ≺ C, let A ∈Mm,n(S), B ∈Mnt,q(S) and C ∈Mqr,s(S). We have by Lemma 1 that

Ao (BoC) = Ao (Ir ⊗B)C

= (Irt ⊗ A)(Ir ⊗B)C

= (Ir ⊗ I t ⊗ A)(Ir ⊗B)C

= [Ir Ir ⊗ (I t ⊗ A)B]C

= [Ir ⊗ (AoB)]C

= (AoB)oC.

Case 3: A ≺ B and B Â C. For any A ∈Mm,n(S), B ∈Mnt,pr(S) and C ∈Mr,s(S), we have

Ao (BoC) = AoB(Ip ⊗C)

= (I t ⊗ A)B(Ip ⊗C)

= (AoB)(Ip ⊗C)

= (AoB)oC.

Case 4: A Â B and B ≺ C, consider A ∈Mm,pq(S), B ∈Mp,n(S) and C ∈Mnr,s(S). For a subcase
r = bq where b ∈N, we have

Ao (BoC) = Ao (Ibq ⊗B)C

= (Ib ⊗ A)(Ibq ⊗B)C

= (Ib ⊗ A)(Ib ⊗ Iq ⊗B)C

= [(IbIb)⊗ A(Iq ⊗B)]C

= [Ib ⊗ (AoB)]C

= (AoB)oC.

For another subcase q = ar where a ∈N, we have

(AoB)oC = [A(Iar ⊗B)]oC

= A(Iar ⊗B)(Ia ⊗C)

= A(Ia ⊗ Ir ⊗B)(Ia ⊗C)

= A[IaIa ⊗ (Ir ⊗B)C]

= A[Ia ⊗ (BoC)]
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= Ao (BoC).

In all cases, we conclude that the right semi-tensor product is associative.

Theorem 2. The map (A,B) 7→ AoB is bilinear. More precisely, for any matrices A, B, C over
S with appropriate sizes and scalars α,β ∈S, the following relations hold:

(αA+βB)oC = α(AoC)+β(BoC), (3)

Co (αA+βB) = α(Co A)+β(CoB). (4)

Proof. We shall prove only the relation (4) since another one can be proved in a similar manner.
Let us consider the case C ≺ A, and let C ∈Mp,m(S) and A,B ∈Mmt,n(S). We have by Lemma 1
that

Co (αA+βB) = (I t ⊗C)(αA+βB)

= α(I t ⊗C)A+β(I t ⊗C)B

= α(Co A)+β(CoB).

For the case C Â A, let C ∈Mp,mt(S) and A,B ∈Mm,n(S). Again, Lemma 1 yields

Co (αA+βB) = C[I t ⊗ (αA+βB)]

= C[α(I t ⊗ A)+β(I t ⊗B)]

= αC(I t ⊗ A)+βC(I t ⊗B)

= α(Co A)+β(CoB).

Theorem 3. If AoB is well-defined, then (AoB)T = BT o AT .

Proof. To consider the case A Â B, let A ∈Mm,nt(S) and B ∈Mn,p(S). By Lemma 1, we have

(AoB)T = [A(I t ⊗B)]T = (I t ⊗B)T AT = (I t ⊗BT)AT = BT o AT .

For the case A ≺ B, let A ∈Mm,n(S) and B ∈Mnt,p(S). We have

(AoB)T = [(I t ⊗ A)B]T = BT(I t ⊗ A)T = BT(I t ⊗ AT) = BT o AT ,

again we apply Lemma 1.

The right semi-tensor product satisfies the following identity-like properties:

Theorem 4. 1. If A ∈Mm,pn(S), then Ao In = A.

2. If A ∈Mm,p(S), then Ao Ipn = In ⊗ A.

3. If A ∈Mpm,n(S), then Ip o A = A.

4. If A ∈Mm,n(S), then Ipmo A = Ip ⊗ A.

Proof. 1. Ao In = A(Ip ⊗ In)= AIpn = A.

2. Ao Ipn = (In ⊗ A)Ipn = In ⊗ A.

3. Ip o A = (Im ⊗ Ip)A = Imp A = A.

4. Ipmo A = Ipm(Ip o A)= (Ip ⊗ Im)(Ip ⊗ A)= IpIp ⊗ Im A = Ip ⊗ A.
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Theorem 5. Let A and B be square matrices such that the product AoB is well-defined. If A
or B is invertible, then AoB ∼ Bo A.

Proof. We may assume that A is invertible. By Lemma 1, I t ⊗ A is also invertible. For the case
A Ât B, we have

A−1(AoB)A = A−1A(I t ⊗B)A

= (I t ⊗B)A

= Bo A.

For the case A ≺t B, we have by Lemma 1 that

(I t ⊗ A)−1(AoB)(I to A) = (I t ⊗ A−1)(I t ⊗ A)B(I t ⊗ A)

= (I tI t ⊗ A−1A)B(I t ⊗ A)

= B(I t ⊗ A)

= Bo A.

From both cases, we can conclude that AoB ∼ Bo A.

Theorem 6. Let A and B be square matrices such that the product AoB is well-defined. If both
A and B are invertible, then AoB is invertible and (AoB)−1 = B−1o A−1.

Proof. For the case A Ât B, we have A−1 Ât B−1 and thus by Lemma 1

(AoB)(B−1o A−1) = A(I t ⊗B)(I t ⊗B−1)A−1

= A(I tI t ⊗BB−1)A−1

= AA−1

= I.

For another case A ≺t B, we have A−1 ≺t B−1 and thus by Lemma 1

(AoB)(B−1o A−1) = (I t ⊗ A)BB−1(I t ⊗ A−1) = (I t ⊗ A)(I t ⊗ A−1)

= I tI t ⊗ AA−1 = Int.

From both cases, we conclude that AoB is invertible and (AoB)−1 = B−1o A−1.

Theorem 7. Let A and B be square matrices such that the product AoB is well-defined. If both
A and B are orthogonal, then so is AoB.

Proof. First, let us consider the case that A ∈ Mnt,nt(S) and B ∈ Mn,n(S). Assume AT A = Int

and BTB = In. Then AoB = A(I t ⊗B) and thus by Lemma 1

(AoB)T(AoB) = [A(I t ⊗B)]T[A(I t ⊗B)]

= (I t ⊗B)T AT A(I t ⊗B)

= (I t ⊗BT)(I t ⊗B)

= I t ⊗BTB

= Int.
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Now, consider A ∈ Mn,n(S) and B ∈ Mnt,nt(S) such that AT A = In and BTB = Int. We have
AoB = (I t ⊗ A)B and then Lemma 1 yields

(AoB)T(AoB) = [(I t ⊗ A)B]T[(I t ⊗ A)B]

= BT(I t ⊗ AT)(I t ⊗ A)B

= BT[(I tI t ⊗ AT A]B

= BT(I t ⊗ In)B

= BTB

= Int.

Hence, AoB is orthogonal.

Proposition 5. Let A and B be square matrices such that the product AoB is well-defined.
If both A and B are upper triangular, then so is AoB. Similar statements hold for the lower-
triangular case and the diagonal case.

Proof. We may assume that A ∈ Mnt,nt(S) and B ∈ Mn,n(S). Then AoB = A(I t ⊗B). Since B
is upper triangular, so is I t ⊗B. Thus, as being the usual product between upper triangular
matrices, the matrix A oB is also upper triangular. The statements for lower triangular
matrices and diagonal matrices can be similarly proven.

Although AoB 6= Bo A in general, their traces always coincide:

Proposition 6. If AoB and BoA are square well-defined matrices, then tr(AoB)= tr(BoA).

Proof. Recall that tr(PQ) = tr(QP) for any square matrices P,Q over S. For the case A ≺t B,
we have

tr(AoB) = tr(I t ⊗ A)B = trB(I t ⊗ A) = tr(Bo A).

The case A Ât B can be treated in a similar way.

4. The Right Semi-Tensor Product, Commutation Matrices and
Vectorizations

In this section, relations between the right semi-tensor product, the left semi-tensor product,
and certain kinds of vectorizations are discussed.

Let us recall some fundamental facts about commutation matrices and two kinds of
vectorizations, namely, row/column vector operators. The row vector operator Vr is defined for
each A ∈Mm,n(S) by

Vr(A) = [
Row1(A) · · · Rowm(A)

]T .

The column vector operator Vc is defined for each A ∈Mm,n(S) by

Vc(A) =

Col1(A)
...

Coln(A)

 .
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Let X = [xi j] ∈ Mm,n(S). Let E i j ∈ Mm,n(S) be the matrix having 1 in (i, j)-position and all
other entries are zero. We can write

X =
m∑

i=1

n∑
j=1

xi jE i j

which implies that

X T =
m∑

i=1

n∑
j=1

xi jET
i j =

m∑
i=1

n∑
j=1

ET
i j X ET

i j.

It follows that

Vc(X T) =
{

m∑
i=1

n∑
j=1

(E i j ⊗ET
i j)

}
Vc(X )

So, we define the commutation matrix or the swap matrix W[m,n] by

K[m,n] =
m∑

i=1

n∑
j=1

E i j ⊗ET
i j ∈ Mmn,mn(S).

Thus, K[m,n] possess the property that Vc(X T) = K[m,n] Vc(X ) for all X ∈Mm,n(S). Let us see
two examples:

K[2,3] =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 and K[3,2] =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 .

Note that every commutation matrix is a permutation matrix. In particular, K[m,n] is invertible
and K−1

[m,n] = K[n,m] = KT
[n,m].

Lemma 2 ([23]). For any A ∈Mm,n(S) and B ∈Mp,q(S), we have

K[m,p](A⊗B)KT
[n,q] = B⊗ A.

The right semi-tensor product and the left semi-tensor product are related through
commutation matrices as follows.

Theorem 8. Let A ∈Mm,n(S) and B ∈Mp,q(S). If A Ât B, then

AoB = AnK[p,t]nBnK[t,q],

AnB = AoK[t,p]oBnK[q,t].

If A ≺t B, then

AoB = K[m,t]n AnK[t,n]nB,

AnB = K[t,m]o AnK[n,t]oB.

Proof. For the case A Ât B, using Lemma 2, we obtain

AnK[p,t]nBnK[t,q] = AK[p,t](B⊗ I t)K[t,q] = A(I t ⊗B) = AoB.
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On the other hand, we have by Lemma 2 that

AoK[t,p]oBnK[q,t] = AoK[t,p]o
{
(I t ⊗B)K[q,t]

}
= AoK[t,p]o

{
K[p,t](B⊗ I t)

}
= AK[t,p]K[p,t](B⊗ I t)

= A(B⊗ I t)

= AnB.

The case A ≺t B can be proved in a similar way.

In particular for row/column vectors, we have the following relations.

Corollary 1. For any R ∈M1,np(S) and C ∈Mp,1(S), we have

RoC = (RK[p,n])nC,

RnC = (RK[n,p])oC.

For any R ∈M1,p(S) and C ∈Mnp,1(S), we have

RoC = Rn (K[n,p]C),

RnC = Rn (K[p,n]C).

Next, we discuss relations between vector operators and the right semi-tensor product.

Lemma 3 ([23]). For any A ∈Mm,n(S), B ∈Mn,q(S) and C ∈Mp,m(S), we have

Vc(ABC) = (CT ⊗ A)Vc(B).

Proposition 7. For any A ∈Mm,n(S), B ∈Mn,q(S) and C ∈Mp,m(S), we have

Vr(CA) = AT oVr(C),

Vc(AB) = AoVc(B).

Proof. Note that Vr(M)=Vc(MT) for any matrix M over S. It follows from Lemma 3 that

Vr(CA) = Vc(ATCT) = (Ip ⊗ AT)Vc(CT) = (Ip ⊗ AT)Vr(C) = AT oVr(C),

Vc(AB) = (Iq ⊗ A)Vc(B) = AoVc(B).

5. Conclusion
We extend the notion of right semi-tensor product for real matrices to that for matrices over
an arbitrary commutative semiring. The right semi-tensor product is defined for any pair of
matrices satisfying the matching-dimension condition, and is given in terms of the tensor
product. The right semi-tensor product includes the usual matrix product and the scalar
multiplication as special cases. The right semi-tensor product turns out to be an associative
bilinear map that is compatible with the transposition and the inversion. The product also
satisfies certain identity-like properties. The product preserves some structural properties of
matrices: invertible, orthogonal, upper/lower triangular, and diagonal. We can convert between
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the right semi-tensor product of two matrices to the left semi-tensor product using commutation
matrices. Moreover, the row/column vector operator of the usual product of matrices can be
written in terms of the right semi-tensor product.
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