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Stability of A Sincov Type Functional Equation

Prasanna K. Sahoo

Abstract. This paper aims to study the Hyers-Ulam stability of a Sincov type
functional equation f(x,y)+ f(y,2) + f(x,2) = £(x + y + z) when the domain
of the functions is an abelian group and the range is a Banach space.

1. Introduction

In 1903, the Russian mathematician D. M. Sincov (see [13] and [14]) studied
the functional equation

fOY)+f(y,2)=f(x,2) (1.1)
for all x,y,z € R (the set of real numbers). Others like Moritz Cantor [2] and
Gottlob Frege [5] (see also [6] and [7]) treated this functional equation before
Sincov. The most general solution f : R> — R of the functional equation (1.1) is
given by f(x,y) = ¢(¥) — ¢(x), where ¢ : R — R is an arbitrary function. The
functional equation (1.1) is known as the Sincov functional equation.

The functional equation
fl,y)+8(y,2) +h(x,z) =L(x+y+2) (1.2)

for all x,y,z € G, where G is an abelian group, is a generalization of the Sincov
functional equation. The following theorem was proved by the author [12].

Theorem 1.1. Suppose G and H are abelian groups written additively. Moreover,
suppose the division by 2 is uniquely defined in H. The functions f, g,h : G> — H and
{ : G — H satisfy the functional equation (1.2) for all x,y,z € G if and only if

L(x)=2a(x)+2q(x)+c; +cy+cs, (1.3)
Fle,y)=alx)—B(y)+alx)+aly)+blx,x)+4b(x,y)+ b(y,y)+cy, (1.4)
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g(x,y)=pB(x) = y(y) +alx)+aly) +blx,x) +4b(x,y) + b(y,y) +c5, (1.5)

h(x,y) =v(x) = aly) +alx) +a(y) + b(x,x) +4b(x,y) + b(y, y) +¢c3, (1.6)
where a, 3,y : G — H are arbitrary functions, b : G> — H is a bihomomorphism,
a : G — H is a homomorphism, and c;, ¢4, C3 are arbitrary elements in H.

The following functional equation

fO,Y)+f(r2)+f(x,2)=Ll(x+y+2) 1.7
is a special case of (1.2) and its solution can be obtained from Theorem 1.1. The
general solution of (1.7) is given by

£(x)=2a(x)+2q(x)+3c, (1.8)

fly)=alx)—aly)+alx)+aly)+blx,x)+4b(x,y)+b(y,y)+c (1.9
where a : G — H are arbitrary function, b : G2 — H is a bihomomorphism,
a: G — H is a homomorphism, and c is an arbitrary element in H. The functional
equation (1.7) was studied by J. A. Baker [1] in 1977.

A function Q : G — H satisfying Q(x + y) + Q(x — y) = 2Q(x) + 2Q(y) for all
x,y € G is called a quadratic function. It is well known that a quadratic function
Q : G — H can be represented as the diagonal of a symmetric bihomomorphism
b:G? — H, thatis Q(x) = b(x, x). Therefore, in (1.9), b(x, x)+4b(x, y)+b(y, y)
can be replaced by 2Q(x + y) — Q(x) — Q(y).

2. Stability of functional equations

Given an operator T and a solution class {u} with the property that T(u) = 0,
when does ||T(v)|| < € for an ¢ > 0 imply that ||u — v|| < 6(¢) for some u and for
some 6 > 0? This problem is called the stability of the functional transformation.
A great deal of work has been done in connection with the ordinary and partial
differential equations. Let G be a group and H be a metric group with metric d(-, -).
S. M. Ulam [16, 17] asked given a number ¢ > 0 does there exist a § > 0 such
that if a function f : G — H satisfies the inequality d(f (xy), f(x) f(y)) < & for
all x,y in G, then there is a homomorphism h : G — H with d(a(x), f(x)) < €
for all x in G? If f is a function from a normed vector space into a Banach
space and satisfies ||f(x + y) — f(x) — f(¥)Il < &, D. H. Hyers [8] proved that
there exists an additive function A such that |[f(x) —A(X)|| < e. If f(x) is a
real continuous function of x over R, and |f(x + y) — f(x) — f(¥)| < &, it was
shown by D. H. Hyers and S. M. Ulam [11] that there exists a constant k such
that |f (x) — kx| < 2¢. Taking these results into account, we say that the additive
Cauchy equation f(x+y) = f(x)+ f(y) is stable in the sense of Hyers and Ulam.
The interested reader should refer to [9, 10] for an indepth account on the subject
of stability of functional equations.

A careful examination of the proof of Hyers’s theorem reveals that the proof
remains true if one replaces the normed vector space by an abelian group.



Stability of A Sincov Type Functional Equation 83

Theorem 2.1. Let G be an abelian group written additively and let B be a Banach
space. If a function f : G — B satisfies the inequality

Ifx+Y)=fE)—fDIIl < &

for some ¢ > 0 and for all x,y € G, then there exists a unique homomorphism
H : G — B such that

If(x)—H)I < ¢
forall x € G.

The Hyers-Ulam stability of the quadratic functional equation

f+)+flx-y)=2f(x)+2f(y) 2.1
was first proved by E Skof [15] for functions from a normed space into a Banach
space. P W. Cholewa [3] demonstrated that Skof’s theorem is also valid if the
relevant domain is replaced by an abelian group. Later, S. Czerwik [4] proved the
Hyers-Ulam-Rassias stability of the quadratic functional equation which includes
the following theorem as a special case:

Theorem 2.2. Let E be a normed space and let B be a Banach space. If a function
f : E — B satisfies the inequality

Ifx+y)+fle=y)=2f () =2f (Il < ¢
for some € > 0 and for all x,y € E, then there exists a unique quadratic function
Q : E — B such that
1
1f () = QG = (e +1£ (0D
forall x € E.
The goal of this paper is to study the Hyers-Ulam stability of the functional

equation (1.7) when the domain of the functions is an abelian group and the range
is a Banach space.

3. Stability of the functional equation (1.7)

Theorem 3.1. Let G be an abelian group written additively and B be a Banach space.
If the functions f : G2 — B and { : G — B satisfy the inequality

1fCe,y)+f(y2)+flz,x)—lx+y+z)l<e 3.1
for some € > 0 and for all x,y,z € G, then there exist a unique homomorphism
A: G — B, a unique quadratic map Q : G — B and a function ¢ : G — B such that

23
[1€(x) = 2A(x) — 2Q(x)Il < ?6+3||f(0,0)|| (3.2)

and

49
1 G, ) = fo e, Il < - € +11£(0, 0)1l (3.3)
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where
folx,y)=¢(x) = p(y) +A) +AY) +2Q(x + ) —Qx) —Q(y)- (3.4)

Proof. Define

_fun - f0)

g(x,y) 5 (3.5)
and

h(x,y)= w - (3.6)
where

v = £(0,0). (3.7)
From (3.5) and (3.6), we obtain

floy) =80, y)+h(x,y)+y. (3.8)
Moreover, we see that

h(x,y) =h(y,x) (3.9)

for all x,y € G, that is h is symmetric in G. Interchanging x with y in (3.1), we
have

If (v, x)+ f(x,2)+ f(z,y) €y +x+2)[<e (3.10)
for all x,y,z € G. From (3.1), (3.5) and (3.10) we obtain
2)1glx,y) +g(y,2)+ gz, x)l
= ||f(x>}’)_f(yax)"‘f(yaz)_f(Z,)’)+f(Z,X)_f(X,Z)
—A(x+y+2)+L(y+x+2)
SNfFCuY)+f(.2)+f(z,x) —(x +y +2)]

+HIfx)+ fx,2)+ f(z,y) =€y +x +2)l|
<2e.

Therefore

lglx,y)+g(y,2)+ gz, x)[ < e (3.11D)

for all x,y,z € G. From (3.5) we see that

glx,y)=—g(y,x) (3.12)

for all x,y € G, that is g is anti-symmetric in G. Using (3.12) in (3.11) we have

llgCx,y) —g(x,2)+g(y,2)l[ <€ (3.13)
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for all x,y,z € G. Letting 2 = 0 in (3.13) we have

llg(x,y) —g(x,0)+g(y,0)ll < e. (3.14)
Define ¢ : G — B by

¢(x) = g(x,0). (3.15)
Then (3.14) yields

llgle,y) —p(x)+ (¥l <e. (3.16)

for all x, y € G. Since, by (3.6), (3.1) and (3.10)

2||h(x,y)+h(y,z)+h(z,x)—L(x+y+2)+ 37l
=1fG.y)+ (v, x)+f(y,2)+ f(z, )+ f(z,x) + f(x,2)
—A(x+y+2z)—L(y+x+32)
SIfGLY)+f(n2)+ fz,x) = L(x +y + 2]
+If )+ f(x,2) + f(2,y) =€y +x +2)|
<2e

hence we have

|h(x, y)+h(y,2) +h(z,x) —€(x+y+2)+3y|| <€ (3.17)
for all x, y,z € G. Next we define F : G — B by

F(x)=4£(x)—3y. (3.18)
Then by (3.18), the equation (3.17) reduces to

Ih(x, ) +h(y,2) +h(z,x) —F(x+y +z)| < € (3.19)
for all x,y,z € G. Letting z = 0 in (3.19) we obtain

Ih(x, y) +h(y,0)+h(0,x) — F(x + y)l| <e. (3.20)

Let us define ¢ : G — B by

Y (x) = h(x,0). (3.21)
Then using the fact that h is symmetric, (3.20) can be written as
(G, Y) + () +P(x)—F(x+y)ll <e (3.22)

for all x,y,z € G. Let z =y =0 in (3.20), we obtain
|Ih(x,0) + h(0,0) +h(0,x) — F(x)|| < e. (3.23)
Since from (3.6) and (3.7) we see that

h(0,0)=0 (3.24)
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the inequality (3.23) can be written as
129 () —F(x)l| <€ (3.25)
for all x € G. Since

Ih(x, y) + () + P (y) — 29 (x + y)ll
= [lhGx, ) + () +¢P(y) = Flx +y) + F(x + y) = 2¢(x + ¥ )l
< |lhCx, y) + () + ¢ (y) = F(x + )l + 124 (x + y) = F(x + y)l|
<2e

therefore

Ih(Cx, y) + () +9(y) —29(x + y)l| < 2¢ (3.26)
for all x,y € G. Since

2[R+ y)+ Yy +2) + P+ x) =) —YP(y) —P(z) —Y(x +y + 2|

=29 (x+y) =) =Y (y) —h(x, y) + 29 (y +2) = (y) — (=)
—h(y,2)+29¢(z+x) —Y(z) = P(x) —h(z,x) —YP(x + y +2)
+F(x+y+2)+h(x,y)+h(y,z)+h(z,x)—F(x+y+2)|

< [[hCx, y) + 9 () +9(y) —2¢9(x + y)I|
+Ih(y,2) + ¢ () + () — 29y + 2|l
+ Iz, x) + Y (2) + P (x) — 29 (z + x)|
+2Y(x+y+2)—F(x+y+2)
+||h(x,y) +h(y,z) + h(z,x) — F(x + y + 2)||

<8e

therefore

lp(x+y)+(y +2) + Pz +x) = () = Y(y) —P(2) —P(x +y + 2l
<4e (3.27)

for all x, y,z € G. Defining the functions a,q : G — B as

a(x) = w (3.28)
and

q(x) = w (3.29)
we see that

P(x) =a(x)+q(x). (3.30)
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Since h(0,0) = 0, from (3.21) we see that

Y (0) =0. (3.31)
Letting z = — x — y in (3.27) and using (3.31) we obtain

P +y) +p(=x) +P(=y) =¥ (x) =Y(y) —YPp(=x —y)| < 4e.  (3.32)

Using (3.28) in (3.32) we have

2]la(x +y) —a(x) —a(y)ll < 4e. (3.33)
Therefore

lla(x +y) —a(x) —a(y)l < 2€ (3.39)

for all x,y € G. Thus by Theorem 2.1, there exists a unique homomorphism
A: G — B such that

lla(x) —A()ll < 2€ (3.35)
for all x € G.
Next, letting z = — y in (3.27) we have
G +y) +p(0) +p(x —y) =29 (x) =Y (¥) —Y(=y)ll < 4e.
Since 1(0) = 0, the last inequality yields
(e +y)+plx —y) =29 () —p(y) —Y(=y)l < 4e (3.36)
for all x,y € G. Replacing y by — y and x by — x in (3.36), we obtain

lY(=x —y)+ ¢y —x) = 29(=x) —YP(—y) =Yl < 4e. (3.37)
Using (3.36) and (3.37), we see that

2[lg(x +y)+q(x — y) —2q(x) = 2q(y)ll
=[x+ y)+P(—x—y)+¢Ppx —y)+¢P(=x+y) —2(x)
=2¢Y(=x) = Y(y) =Y (=y) —YP(=y) =)l
=[x+ y)+plx —y) = 2¢(x) =Y (y) =P (=y)ll
Hlp(=x = y)+Pp(=x+y) =29 (=x) —P(=y) = p(¥)ll

<8e.
Therefore

lg(x +y)+qlx —y)—2q(x) —2q(y)ll < 4e (3.38)

for all x,y € G. Therefore by Theorem 2.2, there exists a unique quadratic map
Q : G — B such that

4e+llq(o)ll

llg(x) — QI < — (3.39)
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for all x € G. Since q(0) = 0, the equation (3.39) implies that

4e
llg(x) — Q(x)Il < TR (3.40)
Using (3.40) and (3.29), we obtain
H P(x) +P(—x)
2

4e
—Q(x) 3 (3.41)

<

Similarly, from (3.28) and (3.35), we have

Y(x) = Y(=x)
2

—A(x)|| £ 2e. (3.42)

Hence from (3.41) and (3.42) we obtain

[l (x) = Alx) — Qx|
'w(x) —Y(=x) Y(x) +1p(=x)
2

A+ —— - Q(X)H

‘w(x)w(—x)
2

S '

Y(x) —Y(=x)
2

) +] ~aw)|

Therefore

10
llYp(x) —A(x) — Q)| < 3 € (3.43)
Next, using (3.26) and (3.43), we compute

Ih(x, ¥) —2Q(x + ¥) + Q(x) + Q(¥) — 2A(x + y) + A(x) + A(y)ll
= [|h(x, y) +29(x + y) = () = Pp(y) =29 (x + y) +p(x) + Y (y)
—2Q(x+y)+Q(x)+Q(y) — 2A(x + y) + Alx) + A(y )l
< |lhCx, y) + () + () — 29 (x + ¥l
+2[(x +y) —Qlx +y) —Alx + y)ll

+ () = Q(x) —A)I + Iy (y) — Q(y) =AWl

46
< —e.
- 3

Therefore
46
lh(x, y) —2Q(x + ¥) + Q(x) + Q(y) —Alx) —AY)Il < 3¢ (3.44)
for all x, y € G. Finally, by (3.17) and (3.44), we get

llg(x,¥) =)+ ¢(y)+h(x,y)—2Q(x+y)+Q(x)+Q(y) —A(x) —A(y) +ll
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<llglx,y) = d(x)+ (¥l
+lh(x,¥) —2Q(x + )+ Q(x) + Q(y) —A(x) —A(Y)Il + Iyl

<® i
— € .
=73 Y

Hence we have

49
g, y) +h(x, y) v = fole, VIl < —- e+ iv (3.45)

where

o, y)=¢(x) = o(¥) +AM) +AY) +2Q(x + ¥) —Q(x) —Q(y). (3.46)

Since

fO,y)=g(x,y)+h(x,y)+y (3.47)

the inequality (3.45) reduces to

49
I|f G, y) = fo e, Y < ?€+|IYII- (3.48)
Similarly, using (3.25) and (3.43), we see that

660 =240 -2l
= [16) ~ 24(x) - 2Q(x) ~ 37 + 371
= [IF(x) - 2A(x) - 2Q(x) + 371
< 24(x) = FCO -+ 211 () = AG) = QU + 3l
23
<Se+3lyl

and the proof of the theorem is now complete. U
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