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problem of the given second order singularly perturbed equation. Resulting first order problem is
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1. Introduction
Functional Differential Equations are also called as singularly perturbed differential-difference
Equations, are mathematical models for the real life phenomenon. Their applications exist
in all areas of contemporary sciences such as economics, engineering, evolutionary biology,
biomechanics and physics [1, 16]. The bistable devices [4, 15], the first exit time problem
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in the modeling of the activation of neuronal variability [19, 22] are all examples involving
equations of differential-difference type. Lange and Miura [10–14] have carried out a detailed
study on the solutions of SPDDEs, turning point behaviour, resonance behaviour and boundary
and interior layer behaviour. Kadalbajoo and Sharma [6] gives a method with finite difference
operator of upwind on a mesh of special type. Kadalbajoo and Sharma [7] analysed a method to
solve singularly perturbed problem with mixed shifts. Swamy et al. [20] presented Galerkin
method with fitting to solve such equations having layer behaviour with delay and advanced
shifts. Salama and Al-Amery [18] has given a asymptotic numerical numerical method for
solving boundary value problem with shift arguments.

Chakravarthy et al. [3] presented a fitted finite difference method for second order delay
differential equation with large delay using cubic spline in compression. Kanth and Murali [9]
presented a scheme for a convection delayed dominated diffusion problem using tension splines.

Chakravarthy and Rao [2] proposed a modified Numerov method for differential-difference
equations of singularly perturbed with mixed shifts. In [17], Kanth and Murali has given a
numerical method based on parametric cubic spline for a nonlinear singularly perturbed delay
differential problem.

In this paper, a simple numerical integration of singularly perturbed differential-difference
equations using non polynomial interpolating function is presented. In Section 2, we described
the numerical scheme for left-end and right-end layer problems. Section 3 deals with the
numerical results of the model problems. Finally discussions and conclusion were given in final
section.

2. Numerical Scheme
We consider the following singularly perturbed differential-difference equation

εy′′(t)+a(t)y′(t)+b(t)y(t−δ)+d(t)y(t)+ c(t)y(t+η)= h(t) (1)

∀ t ∈ (0,1) with the interval boundary conditions

y(t)=φ(t), on −δ≤ t ≤ 0 , (2)

y(t)= γ(t), on 1≤ t ≤ 1+η , (3)

where a, b, c, d, h, φ and γ are bounded and functions of continuously differentiable of t on the
given domain, 0< ε¿ 1 taken as the perturbation parameter and 0< δ¿ 1 and 0< η¿ 1 are
taken as the delay and the advance parameters. With the help of Taylor series in the vicinity of
x, we have

y(t−δ)≈ y(t)−δy′(t) , (4)

y(t+η)≈ y(t)+ηy′(t) . (5)

Using (4) and (5) in (1), we get an equivalent singularly perturbed boundary value problem:

εy′′(t)+ p(t)y′(t)+Q(t)y(t)= h(t) (6)

with

y(0)=φ(0)=φ , (7)

y(1)= γ(1)= γ , (8)
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where

p(t)= a(t)+ c(t)η−b(t)δ (9)

and

Q(t)= b(t)+ c(t)+d(t) . (10)

This transformation from (1) to (6) is permitted, because of the condition that 0 < δ¿ 1 and
0 < η¿ 1 are sufficiently small [5]. Therefore, the solution of (6) will give a relative solution
to (1).

2.1 Left-End Boundary Layer Problems
Taking Q(t) = b(t)+ c(t)+d(t) ≤ 0,p(t) = a(t)+ c(t)η− b(t)δ≥ L > 0 over the domain [0,1], L is
positive constant then (6) possess a unique solution and y(t) shows a layer on the left-end of the
domain, i.e., at t = 0.
Rewrite (6) as follows:

εy′′(t)+ (p(t)y(t))′+ q(t)y(t)= h(t) (11)

where q(t)=Q(t)− p′(t), with

y(0)=φ(0)=φ and y(1)= γ(1)= γ . (12)

The numerical scheme is explained by the following steps:

Step 1. By setting ε = 0 in (11), get the reduced problem and solve it with the appropriate
boundary condition. Let y0(x) be the solution of the reduced problem, that is,

(p(t)y0(t))′+ q(t)y0(t)= h(t) (13)

with

y0(1)= γ . (14)

Step 2. The approximate expression to the (11) is taken as:

εy′′(t)+ (p(t)y(t))′+ q(t)y0(t)= h(t) (15)

with

y(0)=φ(0)=φ and y(1)= γ(1)= γ . (16)

Step 3. The approximated second order problem (15)-(16) is replaced by relative first order
problem as follows.:
By integrating (15), we obtain:

εy′(t)+ p(t)y(t)= f (t)+K (17)

where

f (t)=
∫

H(t)dt and H(t)= h(t)− q(t)y0(t) (18)

and K is an integrating constant to be determined.
To determine the value of K , take the condition that (17) should satisfy the condition, y(1)= γ

i.e., p(1)y(1)= f (1)+K .
Therefore, K = p(1)γ− f (1).
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Therefore, the original problem (11)-(12) is transformed to an equivalent first order problem
(17) with y(0)=φ, which is in turn a relative approximation to (1)-(3).
To solve this initial value problem, we have used a new numerical scheme described below:
Assume that the solution y(t) to the problem (17) can be represented in the interval [tn, tn+1],
n ≥ 0 as the non polynomial interpolating function:

Y (t)= (α1 +α2) e−2t +α3t2 +α4t+α5 , (19)

where α1,α2,α3 and α4 are real undetermined coefficients α5 is constant.
Let yn is the numerical estimate to the theoretical solution y(t) at tn and fn = f (tn, yn).
We define mesh points as

tn = a+nh, n = 0,1,2, . . . . (20)

Imposing the following constraints on the interpolating function (19) in order to get the
undetermined coefficients. The interpolating function must coincide with the theoretical solution
at t = tn and t = tn+1. Hence, we have

Y (tn)= (α1 +α2) e−2 tn +α3t2
n +α4tn +α5 , (21)

Y (tn+1)= (α1 +α2) e−2tn+1 +α3t2
n+1 +α4tn+1 +α5 . (22)

Further, the derivatives of the interpolating function are required to coincide with the
first,second, and third derivatives with respect to t at t = tn. Denote the ith total derivative of
f (t, y) with respect to t with f (i) such that

Y ′(tn)= fn , (23)

Y ′′(tn)= f 1
n , (24)

Y ′′′(tn)= f 2
n . (25)

The derivatives of the interpolant are

fn =−2(α1 +α2) e−2 tn +2α3t2
n +α4 , (26)

f 1
n = 4(α1 +α2) e−2 tn +2α3 , (27)

f 2
n =−8(α1 +α2) e−2 tn . (28)

Using (28), we have

α1 +α2 =−1
8

f 2
n e2 tn . (29)

Substituting (29) into (27), we get

α3 = 1
2

(
f 1
n + 1

2
f 2
n

)
. (30)

Using (29) and (30) into (26), we get

α4 = ( fn − 1
4

f 2
n )− ( f 1

n + 1
2

f 2
n )tn . (31)

Since Y (tn+1)= yn+1 and Y (tn)= yn implies that y(tn+1)= yn+1 and y(tn)= yn

Y (tn+1)−Y (tn)= yn+1 − yn .

Then, we have

yn+1 − yn = (α1 +α2)
[
e−2 tn+1 − e−2tn

]+α3
[
t2
n+1 − t2

n
]+α4 [tn+1 − tn] . (32)
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The nodal points are

tn = a+nh, tn+1 = a+ (n+1)h with n = 0,1,2, . . . (33)

Substitute (29), (30) and (31) into (32), we get

yn+1 = yn − 1
8

f 2
n (e−2h −1)+ 1

2

(
f 1
n + 1

2
f 2
n

)
h2 +

(
fn − 1

4
f 2
n

)
h . (34)

Hence, (34) is the new scheme for solution of the first order differential equation (17).

2.2 Right-End Boundary Layer Problems
Now, the scheme is extended to the right-end layer problems on the underlying domain.
Consider (6) rewritten as follows, for convenience:

εy′′(t)+ (p(t)y(t))′+ q(t)y(t)= h(t) (35)

with

y(0)=φ(0)=φ and y(1)= γ(1)= γ , (36)

where p(t) = a(t)+ c(t)η− b(t)δ, q(t) =Q(t)− p′(t) and Q(t) = b(t)+ c(t)+d(t). Further, assume
that p(t) = a(t)+ c(t)η− b(t)δ ≤ R < 0 over the interval [0,1], where R is a negative constant.
With this assumption, the layer will be in the vicinity of t = 1.

Step 1. Let the solution of the reduced problem be y0(x) of (22), that is,

(p(t)y0(t))′+ q(t)y0(t)= h(t) (37)

with

y0(0)=φ . (38)

Step 2. The approximate equation to the (22) is

εy′′(t)+ (p(t)y(t))′+ q(t)y0(t)= h(t) (39)

with y(0)=φ(0)=φ and y(1)= γ(1)= γ, where the term y(x) is replaced by the solution y0(t) of
the reduced problem (37)-(38).

Step 3. The approximated problem (39) is transformed to an asymptotically equivalent first
order problem as follows.
By integrating (39), we get

εy′(t)+ p(t)y(t)= f (t)+K , (40)

where

f (t)=
∫

H(t)dt and H(t)= h(t)− q(t)y0(t) (41)

and K is an integrating constant to be determined. To find the value of the constant K , use
the condition that the reduced equation of (40) should satisfy the condition, y(0) = φ i.e.,
p(0)y(0) = f (0)+K . Therefore, K = p(0)φ− f (0). In this case, we have used a new numerical
scheme described below:
Assume that the solution y(x) to the problem (40) can be represented in the interval [tn−1, tn],
n ≥ 1 as the non polynomial interpolating function:

F(t)= (α1 +α2) e−2t +α3t2 +α4t+α5 , (42)

where α1,α2,α3 and α4 are real undetermined coefficients α5 is constant.
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We assume yn is a numerical estimate to the theoretical solution y(t) at tn and fn = f (tn, yn).
We define mesh points as follows:

tn−1 = a+ (n−1)h, n = 1,2,3, . . . . (43)

Imposing the following constraints on the interpolating function (42) in order to get the
undetermined coefficients.
The interpolating function must coincide with the theoretical solution at t = tn and t = tn−1.
Hence we require that

Y (tn)= (α1 +α2) e−2 tn +α3t2
n +α4tn +α5 , (44)

Y (tn−1)= (α1 +α2) e−2tn−1 +α3t2
n−1 +α4tn−1 +α5 . (45)

Further the derivatives of the interpolating function are required to coincide with the first,
second, and third derivatives with respect to t at t = tn. Denote the ith total derivative of f (t, y)
with respect to t with f (i) such that

Y ′(tn)= fn , (46)

Y ′′(tn)= f 1
n , (47)

Y ′′′(tn)= f 2
n . (48)

The derivatives of the interpolant are

fn =−2(α1 +α2) e−2 tn +2α3t2
n +α4 , (49)

f 1
n = 4(α1 +α2) e−2 tn +2α3 , (50)

f 2
n =−8(α1 +α2) e−2 tn . (51)

Solving for α1 +α2 from (51), we have

α1 +α2 =−1
8

f 2
n e2 tn . (52)

Substituting (52) into (50), we get

α3 = 1
2

(
f 1
n + 1

2
f 2
n

)
. (53)

Using (52) and (53) into (49), we have

α4 =
(
fn − 1

4
f 2
n

)
−

(
f 1
n + 1

2
f 2
n

)
tn . (54)

Since Y (tn−1)= yn−1 and Y (tn)= yn implies that y(tn−1)= yn−1 and y(tn)= yn

Y (tn)−Y (tn−1)= yn − yn−1 . (55)

Then, we have

yn − yn−1 = (α1 +α2)
[

e−2 tn − e−2tn] +α3
[
t2
n − t2

n−1
]+α4 [tn − tn−1] . (56)

Substitute (52), (53) and (54) into (56), we have

yn−1 = yn + 1
8

f 2
n (1− e2h)− 1

2

(
f 1
n + 1

2
f 2
n

)
h2 +

(
fn − 1

4
f 2
n

)
h . (57)

Hence (57) is the scheme for solution of the first order differential equation (4).
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3. Numerical Illustrations
Example 1. Numerical results for model problem (1)-(3) having boundary layer at the left-end
with

a(t)= 1, b(t)= 2, c(t)= 0, d(t)=−3, h(t)= 0, φ(t)= 1, γ(t)= 1

are shown in Table 1. The layer behaviour is shown graphically in Figure 1.

Table 1. With ε= 10−3, maximum absolute errors of Example 1

δ/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 2.2030e-02 0.232912 9.9900e-04 0.012377 9.9900e-04 1.4359e-03

0.3ε 2.1988e-02 0.232753 1.0002e-03 0.012373 1.0002e-03 1.4358e-03

0.6ε 2.1945e-02 0.232594 1.0014e-03 0.012370 1.0014e-03 1.4356e-03

0.9ε 2.1903e-02 0.232436 1.0026e-03 0.012367 1.0026e-03 1.4355e-03

 
Fig 1. Layer behaviour in Example 1 for 0.1  . 

Figure 1. Layer behaviour in Example 1 for ε= 0.1

Example 2. Numerical results for Model problem (1)-(3) having boundary layer at the left end
with

a(t)= 1, b(t)= 0, c(t)= 2, d(t)=−3, h(t)= 0, φ(t)= 1, γ(t)= 1

are tabulated in Table 2. The layer behaviour is shown graphically in Figure 2.

Table 2. With ε= 10−3, maximum absolute errors of Example 2

η/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 2.2030e-02 0.232912 9.9900e-04 0.012377 9.9900e-04 1.4359e-03

0.3ε 2.2073e-02 0.233071 9.9780e-04 0.012380 9.9780e-04 1.4361e-03

0.6ε 2.2115e-02 0.233229 9.9661e-04 0.012383 9.9661e-04 1.4362e-03

0.9ε 2.2158e-02 0.233388 9.9542e-04 0.012387 9.9542e-04 1.4364e-03
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Fig 2. Layer behaviour in Example 2 for 0.1  . 
 
 Figure 2. Layer behaviour in Example 2 for ε= 0.1

Example 3. Numerical results for Model problem given by equations (1)-(3) having boundary
layer at the left end with

a(t)= 1, b(t)=−2, c(t)= 1, d(t)=−5, h(t)= 0, φ(t)= 1, γ(t)= 1

are shown in Table 3 and 4. The layer behaviour is presented graphically in Figure 3 and 4.

Table 3. With η= 0.5ε and ε= 10−3, maximum absolute errors of Example 3

δ/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 3.2330e-02 0.365172 5.9583e-03 0.017050 5.9583e-03 5.9585e-03

0.3ε 3.2412e-02 0.365550 5.9512e-03 0.017064 5.9512e-03 5.9514e-03

0.6ε 3.2494e-02 0.365928 5.9441e-03 0.017078 5.9441e-03 5.9443e-03

0.9ε 3.2575e-02 0.366306 5.9370e-03 0.017092 5.9370e-03 5.9372e-03

 
 

Fig 3. Layer behaviour in Example 3 for 0.1,  =0.5     . 
 Figure 3. Layer behaviour in Example 3 for ε= 0.1, η= 0.5
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Table 4. With δ= 0.5ε and ε= 10−3, maximum absolute errors of Example 3

η/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 3.2398e-02 3.6549e-01 5.9524e-03 1.7062e-02 5.9524e-03 5.9526e-03

0.3ε 3.2439e-02 3.6568e-01 5.9488e-03 1.7069e-02 5.9488e-03 5.9490e-03

0.6ε 3.2480e-02 3.6587e-01 5.9453e-03 1.7076e-02 5.9453e-03 5.9455e-03

0.9ε 3.2521e-02 3.6605e-01 5.9417e-03 1.7083e-02 5.9417e-03 5.9419e-03

 
 

Fig 4. Layer behaviour in Example 3 for 0.1,  =0.5     . 
 
 
 

Figure 4. Layer behaviour in Example 3 for ε= 0.1, δ= 0.5ε

Example 4. Numerical results for Model problem given by equations (1)-(3) having boundary
layer at the right end with

a(t)=−1, b(t)=−2, c(t)= 0, d(t)= 1, h(t)= 0, φ(t)= 1, γ(t)=−1

are tabulated in Table 5. Figure 5 shows the layer behaviour in the solution of the problem.

Table 5. With ε= 10−3, maximum absolute errors of Example 4

δ/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 9.9900e-04 0.0009995 9.9900e-04 0.00099905 9.9900e-04 0.00099905

0.3ε 1.0002e-03 0.0010007 1.0002e-03 0.00100020 1.0002e-03 0.00100020

0.6ε 1.0014e-03 0.0010019 1.0014e-03 0.00100140 1.0014e-03 0.00100140

0.9ε 1.0026e-03 0.0010031 1.0026e-03 0.00100265 1.0026e-03 0.00100265
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Fig 5. Layer behaviour in Example 4 for 0.1  . 
 
 
 

Figure 5. Layer behaviour in Example 4 for ε= 0.1

Example 5. Numerical results for Model problem given by equations (1)-(3) having boundary
layer at the right end with

a(t)=−1, b(t)= 0, c(t)=−2, d(t)= 1, h(t)= 0, φ(t)= 1, γ(t)=−1

are tabulated in Table 6. The layer behaviour in the solution is presented in Figure 6.

Table 6. With ε=10−3, maximum absolute errors of Example 5

η/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method

0.0ε 0.0099501 3.6322e+095 0.0009995 0.0009995 0.0001581 0.0009990

0.3ε 0.0099495 3.8832e+095 0.0009994 0.0009983 0.0001581 0.0009978

0.6ε 0.0099489 4.15113e+095 0.0009994 0.0009971 0.0001581 0.0009966

0.9ε 0.0099483 4.4377e+095 0.0009993 0.0009959 0.0001581 0.0009954

 
 
 

Fig 6. Layer behaviour in Example 5 for 0.1,  =0.5   . 
 

Figure 6. Layer behaviour in Example 5 for ε= 0.1, δ= 0.5ε
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Example 6. Numerical results for Model problem given by equations (1)-(3) having boundary
layer at the right end with

a(t)=−1, b(t)=−2, c(t)=−2, d(t)= 1, h(t)= 0, φ(t)= 1, γ(t)=−1

are shown in Table 7 and 8. The layer behaviour is shown graphically in Figure 7 and 8.

Table 7. Maximum absolute errors of Example 6 for δ= 0.5ε and ε= 10−3

η/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method
0.0ε 2.9970e-03 0.0030014 2.9970e-03 0.0029974 2.9970e-03 0.0029973
0.3ε 2.9934e-03 0.0029978 2.9934e-03 0.0029938 2.9934e-03 0.0029935
0.6ε 2.9898e-03 0.0029943 2.9898e-03 0.0029902 2.9898e-03 0.0029900
0.9ε 2.9863e-03 0.0029907 2.9863e-03 0.0029867 2.9863e-03 0.0029865

 

 

Fig 7. Layer behaviour in Example 6 for 0.1,  =0.5   . 
 Figure 7. Layer behaviour in Example 6 for ε= 0.1, η= 0.5ε

Table 8. Maximum absolute errors of Example 6 for η= 0.5ε and ε= 10−3

δ/h 10−3 10−4 10−5

Present method Upwind method Present method Upwind method Present method Upwind method
0.0ε 2.9851e-03 2.9895e-03 2.9851e-03 2.9855e-03 2.9851e-03 2.9852e-03
0.3ε 2.9886e-03 2.9931e-03 2.9886e-03 2.9891e-03 2.9886e-03 2.9887e-03
0.6ε 2.9922e-03 2.9966e-03 2.9922e-03 2.9927e-03 2.9992e-03 2.9923e-03
0.9ε 2.9958e-03 3.0002e-03 2.9958e-03 2.9962e-03 2.9958e-03 2.9959e-03

                                                                
 

 Fig 8. Layer behaviour in Example 6 for 0.1,  =0.5   . 
 

Figure 8. Layer behaviour in Example 6 for ε= 0.1, δ= 0.5ε
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4. Discussions and Conclusion
The numerical solution of a initial value problem is easier than that of corresponding boundary
value problem. Hence, we desire to reduce the second order problem into a first order problem.
This numerical integration scheme using non polynomial interpolation function provides an
alternative to the formal approaches of converting the second order problems into first order
problems. The method is implemented on several examples with left layer and right layer,
with distinct values of the delay parameter δ, advanced parameter η and the perturbation ε.
The computational results are tabulated with comparison. The affect of delay and advanced
parameters on the solutions of the problem has been investigated through graphs. When the
solution of the SPDDEs exhibit layer on the left-end, it is observed that the affect of delay or
advanced parameters in the layer domain is negligible, while it is considerable in the outer
region. The variation in the advanced parameter affects the solution in the similar manner as
the change in delay affects but reversely in (see Figures 1-5). Also, there is an influence in layer
region as well as outer region, when the SPDDEs exhibit layer on the right-end with respect
to the variations in delay or advanced parameters. We noticed that, as the delay parameter
increases the thickness of the layer increases, while the advanced parameter increases the layer
thickness decreases (Figures 6-8). It can be noticed from results that the present scheme meets
the exact solution very well.
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