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Abstract. A theoretical study of the laminar squeeze flow of copper water and alumina water
nanofluids between a flat circular stationary disk and a curved circular moving disk is carried out
using energy integral method. The squeeze film behaviour is examined analytically and the effects of
inertia and curvature on the squeeze film pressure, load carrying capacity of the fluid and temperature
are analysed. Further, the problem is solved numerically for a sinusoidal motion of the upper curved
disk taking an exponential form of the gap width. It is found that the copper water nanofluid is
better than alumina water nanofluid for better heat transfer rates. While high inertia forces strongly
influence the squeeze film behaviour, low inertia forces are favourable for temperature distribution.
Further, concave nature of the upper disk gives better squeeze film characteristics than convex disk.
However, convex disk is better than concave disk as far as the temperature distribution is concerned.
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1. Introduction
Squeeze films are encountered enormously in applications such as hydrodynamic lubrication,
turbo-machinery, automotive engines, etc. There are many applications involving squeeze films
in curved circular geometries. Thus many authors have investigated the combined effects of
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curvature and inertia on the squeeze film behaviour [7, 11, 12, 13, 14]. In addition, thermal
effects on the squeeze film characteristics have also been considered in literature [4, 10].

Nanofluids are suspensions involving a base fluid containing nanoparticles. They have many
possible applications like solar energy absorption and friction reduction used in automobile
brake fluids. They also find applications in drug delivery, microelectronics, defense, nuclear
systems, space craft, etc. The efficiency of heat transfer in boundary layer flow and squeeze film
flows involving nanofluids have been studied by many researchers [1, 5, 8].

The present problem studies the combined effects of inertia and curvature on squeeze film
behaviour of nanofluids between a flat circular stationary disk and a curved circular moving
disk. The solution is obtained for the sinusoidal motion of the exponential curved disk using
energy integral method. Also the variations in squeeze film pressure, squeeze film force and
mean temperature distribution for copper water and alumina water nanofluids, with different
volume fractions, are analysed.

Section 2 presents the mathematical formulation for the problem. Section 3 describes the
solution by energy integral method. Section 4 elaborates on the results and discussion of the
problem. Section 5 gives the conclusion drawn from the present investigation.

2. Mathematical Formulation
The laminar squeeze flow of an incompressible viscous nanofluid between a flat circular
stationary disk at z = 0 and a curved circular moving disk at z = h(r, t) is considered (Figure 1).
The upper curved circular disk of radius ra approaches the lower flat circular disk with a
squeezing velocity of −ht(r, t) (or) −∂h(r,t)

∂t , where r is the radial coordinate and t is the time.
The temperatures on the lower and upper disks are taken to be θ0 and θ1, respectively. Here u
and w are the velocity components in radial and axial directions, respectively.

 

 

 
 

  

Figure 1. Curved squeeze film geometry

The flow is assumed to be axisymmetric and laminar and the body forces are absent. Under
these hydrodynamic lubrication assumptions the governing equations in the non-dimensional
form are given by

1
R
∂ (RU)
∂R

+ ∂W
∂Z

= 0 , (2.1)

Re
(
∂U
∂T

+U
∂U
∂R

+W
∂U
∂Z

)
=−∂P

∂R
+ ∂2U
∂Z2 , (2.2)
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∂P
∂Z

= 0 , (2.3)

RePr
(
∂Θ

∂T
+U

∂Θ

∂R
+W

∂Θ

∂Z

)
= ∂2Θ

∂Z2 +EcPr
(
∂U
∂Z

)2
(2.4)

along with the boundary conditions for velocity components, pressure and temperature given by

U = 0, W = 0 on Z = 0; U = 0, W = ∂H(R,T)
∂T

on Z = H(R,T) , (2.5)

∂P
∂R

= 0 on R = 0; P = 0 on R = 1 , (2.6)

Θ= 1 on Z = 0 , (2.7)
∂Θ

∂Z
= 0 on Z = H(R,T) . (2.8)

The integral form of the continuity equation in the non-dimensional form and the mean
temperature are given by∫ H(R, T)

0
U dZ =− 1

R

∫ R

0
R
∂H(R,T)

∂T
dR , (2.9)

1
H

∫ H(R,T)

0
ΘdZ =Θm . (2.10)

Equations (2.1)-(2.10) have been obtaining by using the following non-dimensional quantities

R = r
ra

, Z = z
h0

, H = h
h0

, T =ωt, U = u
ωra

, W = w
ωh0

, Θ= θ−θ1

θ0 −θ1
, P = ph0

2

µnf ra2ω

Re= ρnfωh0
2

µnf
, Pr=

(µCP )nf

knf
, Ec = ω2ra

2

(CP )nf (θ0 −θ1)
, (2.11)

where P is the pressure, Θ is the temperature, ρnf is the density, µnf is the dynamic viscosity,
(CP )nf is the specific heat capacity and knf is the thermal conductivity of the nanofluid.

3. Solution by Energy Integral Method (EIM)
The velocity components U , W , pressure P and mean temperature Θm are obtained using
equations (2.1)-(2.10) by energy integral method. Multiplying equation (2.2) by U on both sides
and integrating from Z = 0 to Z = H(R,T) and using equations (2.1), (2.2) and (2.5), gives

Re
(
∂

∂T

∫ H(R,T)

0

(
U2

2

)
dZ+ 1

2
∂

∂R

∫ H(R,T)

0
U3dZ+ 1

2R

∫ H(R,T)

0
U3dZ

)
=−∂P

∂R

∫ H(R,T)

0
UdZ+

∫ H(R,T)

0
U
∂2U
∂Z2 dZ . (3.1)

The inertialess solution of radial velocity component U obtained from equation (3.1) using
equation (2.9) with the boundary conditions (2.5) is given by

U = 6
RH3

(∫ R

0
R
∂H
∂T

dR
)(

Z2 −HZ
)

. (3.2)

Using equation (3.2) in continuity equation (2.1), the axial velocity component W is obtained as

W = 18HR

RH4

(
Z3

3
− HZ2

2

)∫ R

0
R
∂H
∂T

dR− 6
H3

∂H
∂T

(
Z3

3
− HZ2

2

)
+ 3HR Z2

RH3

∫ R

0
R
∂H
∂T

dR . (3.3)
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Using equation (3.2) in (3.1), the pressure gradient is obtained which on integration yields the
pressure distribution as

P =−12
∫ 1

R

1
RH3

(∫ R

0
R
∂H
∂T

dR
)

dR

+ Re
[

3
5
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HT
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0
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dR
)

dR− 6
5
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1
RH

∂
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0
R
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dR
)
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− 54
35
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R
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0
R
∂H
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dR
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dR− 54
35

∫ 1
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R2H3

(∫ R

0
R
∂H
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dR
)2

dR

+ 81
35

∫ 1

R

HT

RH2

(∫ R

0
R
∂H
∂T

dR
)

dR
]

. (3.4)

When H(R,T) is independent of R, the pressure in the curved squeeze film case reduces to that
in the flat plate case. The non-dimensional form of the squeeze film force is given by

Fsq =
∫ 1

0
R

(
P + (

δ4WR +δ2UZ
)
HR −2δ2WZ

)|Z=H(R,T)dR , (3.5)

where Fsq = fsqh2
0

2πµωr4
a
, δ= h0

ra
and fsq is the dimensional squeeze film force obtained by integrating

pressure.
Using equations (3.2), (3.3) and (3.4) in equation (3.5), the squeeze film force for an arbitrary

shape of the upper curved disk can be obtained. Using the continuity equation (2.1) in equation
(2.4) and integrating with respect to Z from Z = 0 to Z = H (R,T), the energy equation is
given by

RePr
(
∂

∂T

∫ H

0
ΘdZ+ ∂

∂R

∫ H

0
(UΘ)dZ+ ∂

∂Z

∫ H

0
(WΘ)dZ+

∫ H

0

(
UΘ
R

)
dZ

)
=

∫ H

0

∂2Θ

∂Z2 dZ+EcPr
∫ H

0

(
∂U
∂Z

)2
dZ . (3.6)

Assuming that the temperature variation in Z-direction is small in equation (2.4), the convective
term is taken as constant in the Z-direction and it is denoted by M as

∂2Θ

∂Z2 +EcPr
(
∂U
∂Z

)2
= M . (3.7)

Using equation (3.2) and integrating equation (3.7) twice with respect to Z with the boundary
conditions (2.7) and (2.8), the temperature Θ in terms of M is obtained as

Θ= M
(

Z2

2
−HZ

)
+1−EcPr

(
36

R2H6

(∫ R

0
R
∂H
∂T

dR
)2)(

Z4

3
+ H2Z2

2
− 2HZ3

3
− H3Z

3

)
. (3.8)

Using equation (3.8) in equation (3.6) together with the boundary condition (2.8) and ∂Θ
∂Z = Nu

at Z = 0, the convective term M in equation (3.8) is obtained as

M = M1

M2
, (3.9)

where

M1 = Nu
RePr

+ Ec
Re

(
12

R2H3

(∫ R

0
R
∂H
∂T

dR
)2)
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+ 18
5

PrEc
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R2H2
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0
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dR
)2

− 1
R2H

∂
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(∫ R

0
R
∂H
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dR
)2)

+ 129
35

PrEc

·
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−2
R4H2
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0
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dR
)3)

−
(

2
R3H3
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0
R
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dR
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+
(

3HT

R2H2
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0
R
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dR
)2))

and

M2 = 7HHR

10R

(∫ R

0
R
∂H
∂T

dR
)
− 13H2HT

20
.

The temperature expression is obtained by using equation (3.9) in equation (3.8). Finally, using
this temperature expression into equation (2.10), the mean temperature is obtained as

Θm = M1

M2

(−H2

3

)
+ 18

5
Ec Pr
R2H2

(∫ R

0

dH
dT

dR
)2

+1 . (3.10)

The curvature effects of upper disk on the squeeze film characteristics are examined for an
exponential form of the gapwidth h(r, t) = h1(t)k̂(r) [7]. Here, h(r, t) is taken as a product of
volumetric central film thickness h1(t) and a curvature profile of the curved disk k̂(r) where
k̂(r) is taken as e−ĉr2

, ĉ is the curvature parameter with ĉ > 0 for concave disk and ĉ < 0
for convex disk. The motion of the upper curved disk can be treated as sinusoidal, given by
h1(t)= h10+ esinωt, where e is the amplitude, and ω is the angular frequency of the sinusoidal
motion. In this case, the characteristic length h0 in the axial direction is taken as theinitial
central film thickness h10.

Using the non-dimensional quantities from equation (2.11) and

H1 = h1

h10
, E = e

h10
(3.11)

the dimensionless form of h(r, t) taking C = ĉr2
a is given by

H (R,T)= H1 (T)K (R)= (1+E sinT) e−CR2
. (3.12)

The non-dimensional pressure, force and mean temperature expressions in this case are obtained
from equations (3.4), (3.5) and (3.10), respectively as

P = −6Ḣ1

H3
1

∫ 1

R

R
K3 dR+Re

(
15
14

(
Ḣ1

H1

)2∫ 1

R

R
K2 dR− 3

5
Ḧ1

H1

∫ 1

R

R
K

dR− 27
70

(
Ḣ1

H1

)2∫ 1

R

R2

K3
dK
dR

dR

)
, (3.13)

Fsq =
∫ 1

0
R

[
−6Ḣ1

H3
1

dR+Re

(
15
14

(
Ḣ1

H1

)2 ∫ 1

R

R
K2 dR− 3

5
Ḧ1

H1

∫ 1

R

R
K

dR− 27
70

(
Ḣ1

H1

)2 ∫ 1

R

R2

K3
dK
dR

dR

)

+δ4

[
− 9

K2

(
dK
dR

)2
+ R

K3

3R3Ḣ1H12
1 K11

2
dK
dR

+ 3R4Ḣ1H12
1 K10

2

(
dK
dR

)2
+ 3Ḣ1

2K
d2K
dR2

− 3R3Ḣ1H9
1K8

2
dK
dR

+ 3Ḣ1R
2K

d2K
dR2 − 9R4Ḣ1H6

1K4

2

(
dK
dR

)2
]
− 3δ2RḢ1

H1K2
dK
dR

]
dR , (3.14)

Θm = Θm1

Θm2

(
− (H1K)2

3

)
+ 9

10
PrEc

R2(Ḣ1
)2

(H1K)2 +1 , (3.15)

where

Θm1=
Nu

RePr
+Ec

Re

(
3R2(Ḣ1

)2

(H1K)3

)
+PrEc

(
96R2(Ḣ1

)3

35(H1K)2 − 9R2Ḣ1Ḧ1

5H1K
− 129R3(Ḣ1

)3

140(H1K)3

)
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and

Θm2=
7RH2

1Ḣ1K
20

dK
dR

− 13(H1K)2Ḣ1

20
.

Here, dot (•) represents differentiation with respect to T . Integration of pressure and force
expressions are difficult to evaluate analytically and so they are obtained numerically by using
adaptive Simpson’s rule.

The mean temperature of equation (3.15) is evaluated for two different types of nanofluids
namely (i) Copper water nanofluid and (ii) Alumina water nanofluid [1, 5]. Water is taken as the
base fluid for both types of nanofluids with base temperature 293 K and Prandtl number
Pr = 7.02. The diameter of solid spherical copper water nanoparticle is taken as 100 nm.
The calculations of thermal conductivity for alumina (Aluminium oxide) water nanofluid and
copper water nanofluid with spherical shape of nanoparticles are presented [6, 9]. The thermal
properties of all nanofluids depend on the volume fraction φ of the nanoparticles. The effective
density, heat capacity, dynamic viscosity and thermal conductivity of nanofluids are presented
in literature [2, 3].

ρnf = (1−φ)ρbf +φρs , (3.16)

(ρCp)nf = (1−φ)(ρCP )bf +φ(ρCp)s , (3.17)

µnf =
µbf

(1−φ)2.5 , (3.18)

knf = kbf

{ (ks/kbf )+ (n−1)− (n−1)φ(1− (ks/kbf ))
(ks/kbf )+ (n−1)+φ(1− (ks/kbf ))

}
, (3.19)

where n is the empirical shape factor of nanofluid and in equations (3.16)-(3.19), the subscripts
‘nf ’, ‘bf ’ and ‘s’ represent the properties of nanofluid, base fluid and nanoparticles respectively.
The density ρ (Kg/m3), specific heat capacity Cp (J/KgK) and thermal conductivity k (W/mK) at
20◦ C, respectively of the base fluid water are 1000.52, 4181.8 and 0.597, and those of copper
are 8954, 383.1 and 386, and those of alumina are 3970, 769 and 36.

4. Results and Discussion
Inertial, thermal and curvature effects on the squeeze film behaviour between a flat circular
stationary disk and a curved circular moving disk are investigated using energy integral method.
The non-dimensional squeeze film pressure from equation (3.13) and load carrying capacity from
equation (3.14) are obtained for the gapwidth given by equation (3.12). The mean temperature
distribution of copper water and alumina water nanofluids with different volume fractions are
obtained using the thermal physical properties of nanofluids and Eq. (3.15). The value of the
local heat transfer coefficient is Nu = 0.332(Re)0.5(Pr)0.333. Further, in all these graphs, solid
lines correspond to a concave disk, dashed lines correspond to a convex disk and dash dotted
lines correspond to the flat disk case.

In Figures 2-10, the characteristic time T is taken as 0.8 and amplitude E is taken as 0.2
or 0.4. Figure 2 shows the radial pressure distribution in the case of concave disk C > 0 and
convex disk C < 0. Figures 3-5 give the force distribution as a function of time. Figures 3 and 4
show the curvature effects on the force distribution in the case of concave disk C > 0 and convex
disk C < 0, respectively. Figure 5 shows the force distribution in the case of different values of
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Reynolds number with concave and convex disks. The temperature profiles have been plotted
in Figures 6-10 and the values of various parameters are used for copper water and alumina
water nanofluids [1, 5]. Figures 6-9 correspond to the mean temperature profile for copper
water nanofluid and Figure 10 corresponds to the mean temperature profile for alumina water
nanofluid. Figures 6 and 7 respectively show the mean temperature distribution of concave
disk C > 0 and convex disk C < 0 for different Reynolds numbers (Re) with different volume
fractions φ and a fixed Eckert number (Ec) taken as 0.01. Figure 8 shows the mean temperature
distribution of concave disk C > 0 and convex disk C < 0 for different Re with different Ec and
volume fraction φ= 0.09 (Pr= 2.60). Figures 9 and 10 respectively show the mean temperature
distribution of copper water and alumina water nanofluids for concave, flat and convex disks
with particular volume fraction.
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Figure 2. Inertial effects on radial pressure distribution (concave and convex disks)
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Figure 3. Curvature effects on squeeze film force distribution (concave disk)
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Figure 4. Curvature effects on squeeze film force distribution (convex disk)

Figure 5. Inertial effects on squeeze film force distribution
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Figure 6. Effects of volume fraction on temperature profile (concave disk) of copper water nanofluid
(◦◦◦ numerical solution, — analytical solution)

Journal of Informatics and Mathematical Sciences, Vol. 10, Nos. 1 & 2, pp. 371–381, 2018



Natural Convection Flow of Nanofluids in Squeeze Film. . . : Vimala P. and Manimegalai K. 379

 

 

 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

1.1

1.2

1.3

1.4

R

Θ
m

Ec = 0.01,  E = 0.4,  T = 0.8, C = - 0.75

1   Re = 12 , φ =  0.09  
2   Re = 12 , φ =  0.05  
3   Re = 12 , φ =  0.00  
4   Re = 48 , φ =  0.09  
5   Re = 48 , φ =  0.05  
6   Re = 48 , φ =  0.00  

1 
2 

3 
4 

5
6 

Figure 7. Effects of volume fraction on temperature profile (convex disk) of copper water nanofluid
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Figure 8. Effects of Ec on temperature profile of copper water nanofluid
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Figure 9. Curvature effects on temperature profile of copper water nanofluid
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Figure 10. Curvature effects on temperature profile of alumina water nanofluid

The following observations are made from these graphs:

• the radial pressure distribution increases with an increase in Re;

• squeeze film force increases with an increase in concave nature of the curved disk and
with an increase in Re;

• mean temperature decreases with an increase in Re for various volume fractions, whereas
it increases with an increase in Ec;

• as far as squeeze film pressure and force are concerned the concave nature and high
inertial effects of the upper disk seem favourable. However, the mean transfer distribution
is better for convex nature of the upper disk and low inertia cases;

• the mean temperature increase is more significant for copper water nanofluid than
alumina water nanofluid for all the cases because of the effective thermal properties of
copper water nanofluid.

5. Conclusion
The laminar flow of an incompressible viscous nanofluid between a flat circular stationary disk
and an axisymmetric curved circular moving disk is examined using energy integral method.
The combined inertial and curvature effects are considered. Here, one wall is taken to satisfy the
isothermal condition and the other is taken to satisfy the adiabatic condition. The squeeze film
pressure, load carrying capacity and mean temperature of the copper water and alumina water
nanofluids are investigated for an exponential form of the gapwidth. The increasing inertial
effect is more significant for increasing load carrying capacity and increasing heat transfer rate.
In the case of high inertial effect the convection is more dominant. Therefore the moderate
inertial effect is more significant for nanofluid lubrication.
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