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Abstract. The modified artificial immune system algorithm, hybridized with the Elliot Hopfield
Neural Network, is proposed in doing the 3-Satisfiability programming (EHNN-3SATAIS). The main
impetus of this paper is to investigate the effectiveness and capability of the proposed approach
in the 3-Satisfiability programming with different complexities based on the number of neurons.
The performance analysis of the proposed technique is assessed by integrating the comprehensive
simulation via Dev C++ Version 5.11 and compared with the state-of-the-art Elliot Hopfield networks.
The Elliot Hopfield network is to be incorporated into the exhaustive search (EHNN-3SATES)
and genetic algorithm (EHNN-3SATGA). The simulated results depicted the performance of the
paradigms in terms of mean absolute error (MAE), Schwarz Bayesian Criterion (SBC) and CPU Time.
The proposed approach, EHNN-3SATAIS outperformed its other two conventional counterparts in
term of accuracy, sensitivity, and robustness during the simulation. Hence, the simulation has proven
that the modified artificial immune system algorithm complied effectively in tandem with the Elliot
Hopfield neural network in doing the 3-Satisfiability logic programming.
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1. Introduction
The research on 3-Satisfiability (3-SAT) problem is flourishing even though it was theoretically
considered as a classical NP-hard problem as explained by Johnson [15]. Fundamentally, the 3-
SAT problem is demarcated as a propositional logic formula represented in a conjunctive normal
form (CNF) with an array of clauses comprising strictly 3 literals per clause [18]. Consequently,
a 3-SAT problem permits dual choices of the representation of each variable, given as 1 or −1.
Furthermore, the 3-SAT problem is a class of non-deterministic problem and widely addressed
as a constraint satisfaction problem (CSP). In 3-SAT logic programming, we are required to
hunt for the best 3-SAT interpretation that will converge to global minimum solution. The major
problem arises in computing the 3-SAT problem is the complexity. To address that problem,
there are a plethora of works on the approach in solving 3-SAT problem ranging from the exact
to the approximation techniques. For instance, Bünz and Lamm [2] proposed a classifier for
randomized 3-SAT data sets by incorporating Graph neural network (GNN). The result recorded
from the work was acceptable with the accuracy between 65% to 71%. The core motivation of
3-SAT logic programming is enthused by the development of Horn Satisfiability (HORN-SAT)
inaugurated by Sathasivam [4]. Since the complexity of 3-SAT evolves exponentially, a robust
training method based on the metaheuristic paradigm will be proposed.

The emergence of HNN has started in 1982, where a neuroscientist proposed a model of
artificial neural network (ANN), namely Hopfield neural network (HNN) [13,28]. Thus, Hopfield
[13] introduced an associative network that propelled up the field of ANN in solving various
problems. Theoretically, the HNN was utilized to solve many class of optimization and constraint
satisfaction problems [7,12]. The architecture of HNN includes of a simple recurrent network
that has awell-organized associative memory and impersonates the biological brain [20, 21].
Wen et al. [37] proposed that the HNN is one major neural networks specialized and crafted
for solving the constraint optimization or mathematical programming problems. The power of
HNN is that the architecture can be applied in verification of an electronic circuit, probably on
a very large-scale integration circuit [16,28]. Pinkas [24] elaborated that the structure of HNN
minimizes Lyapunov energy by utilizing the physical Ising spin of the neuron states. Pinkas [24]
and Wan Abdullah [36] described a bi-directional mapping between logic and energy function of
symmetric neural network. Thus, the HNN can be utilized as a black-box model in solving the
any variant of satisfiability logic program.

The competencies of energy optimization in HNN has motivated a prolific number of
researchers to hybridize and incorporate the idea of logic programming in HNN. For instance,
the state-of-the-art hybrid HNN models were developed by Sathasivam and Wan Abdullah [27]
and Kasihmuddin and Sathasivam [16]. Henceforth, Velavan et al. [35] describes the flexibility
of HNN to integrate with the searching algorithm such as Mean Field theory. Furthermore, the
work by Zhang et al. [41] has proposed the classification by utilizing the Hopfield associative
memories for Chernoff face image recognition. As a result, the work reported the welding quality
of Chernoff face image had been successfully classified even though it was under abnormal
welding conditions. In this paper, Elliot function proposed by Sibi et al. [31] will be embedded to
the Hopfield neural network as an Elliot Hopfield neural network (EHNN).
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The works on the artificial immune system (AIS) algorithm has been motivated by the
capability and robustness in performing some computation. To begin with, AIS is a class of
evolutionary algorithm and metaheuristic method, inspired by the mechanism in the immune
system based on the work of Dasgupta et al. [5]. The capability of AIS as a searching and
accelerating paradigm has benefited the researcher to solve numerous constraint satisfaction
problems and real-life data [19]. The studies on AIS can be divided into 3 variants such as
immune clonal selection, immune networks, and negative selection of the B-cells [32]. The focus
on AIS revolves on the learning and memory. In fact, AIS will be deployed in the learning
phase of EHNN in doing 3-SAT logic programming. A prolific amount of works on artificial
immune systems from the revolution research by Farmer et al. [6] has changed the AIS into
a vigorous metaheuristic model to solve numerous problems ranging from simulated to the
real-life problem. Besides, the AIS inaugurates the idea that only those B-cells can identify the
antigen proliferate; thus, it is being nominated against those that do not [33]. Moreover, the
AIS paradigm proposed in this work is basically impersonates the clonal selection process as in
biological immune system. Hence, the binary AIS is proposed by modifying the standard AIS
by Layeb [19] in the way of affinity computation and hybridization with Elliot Hopfield neural
network (EHNN). To evaluate the performance of modified AIS, we compared with the standard
model of genetic algorithm (GA) and exhautive search (ES).

This paper has been organized as follows. In Section 2, the background and fundamental
formulation of 3-Satisfiability (3-SAT) is highlighted. Section 3 emphasizes the formulation
of Hopfield neural network with Elliot activation function. Then, Section 4 discusses the
learning method via the modified artificial immune system. Meanwhile, in Section 5 the
genetic algorithm and exhaustive search are vividly introduced. Furthermore, Section 6 and 7
discuss the performance evaluation metrics; the implementation of the EHNN networks are
also discussed. Section 8 and 9 encompass the full results, comprehensive discussions, and
conclusion.

2. 3-Satisfiability (3-SAT) Logic Programming
3-Satisfiability (3-SAT) is a class of constraint satisfaction problem, widely used in the field
of mathematics, computer sciences and physics. The main task is to enumerate a set of
interpretations consisting of binary or bipolar values that make the 3-SAT formula to be
satisfied. In fact, there are numerous constraint satisfaction problems dealing with non-Boolean
quantities can also be converted into the 3-SAT problem [14]. Therefore, 3-SAT logical rule will
be entrenched to a network to perform the computation or data processing. Ideally, 3-SAT is a
variant of Boolean logic consists of three literals per clause with the bipolar values of either 1
or −1.

In this paper, 3-SAT logic program will be embedded to the EHNN with different learning
algorithm. An example of a 3-SAT logical rule is given:

P = (A∨B∨ C̄)∧ (D∨E∨F)∧ (G∨H∨ I) . (1)

Equation (1) shows a 3-SAT formula, P with 3 clauses connected by AND operators. Each clause
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containing 3 different literals connected by OR operators. Henceforth, the number of neurons
corresponds to the total number of literals involved in a particular 3-SAT logic programming.

Therefore, the generalized form of 3-SAT formula is shown in equation (2).

P =∧n
i=1 Ti (2)

whereby T symbolizes the clause and i denotes the number of clauses involved in 3-SAT
formula P .

The four important connotations of 3-SAT logic formula are simplified:

(i) The variables denote as x1, x2, . . . , xn for a particular clause, where the variables is strictly
equal to n = 3 for 3-SAT logic.

(ii) An array of m clauses in a 3-SAT formula, Z. ∃ m : Z = c1 ∧ c2 ∧ . . .∧ cm.

(iii) An array of literals in respective clauses. As for 3-SAT formula, we are strictly set 3
literals per individual clause. Next, each clause ckcontained of literals connected by the
logical operator OR. ∀ 1≤ k ≤ m : ck = (lk,1 ∨ lk,2 ∨ lk,3).

(iv) An array of literals which are the negation of the variable or the variable itself.
∀ 1≤ k ≤ m, 1≤ i ≤ 3 : lk,i = xp or lk,i =¬xp for 1≤ p ≤ n.

3. Elliot Hopfield Neural Network (EHNN)
Hopfield neural network (HNN) is a variant of recurrent neural network, widely applied with
logic programming and data mining. It comprises the interconnected neurons that forming a
network that impersonates the human biological brain system. It is often known as a black-box
model but comprises astounding properties such as parallel execution, faster computation,
exceptional stability, and good associative memory system in the form of content addressable
memory (CAM) (Sathasivam and Wan Abdullah [27]).

In this research, we consider discrete HNN to hybridized with Elliot activation function
to form Elliot Hopfield neural network (EHNN). As we consider the discrete EHNN, the
interconnected neurons will be assigned to their respective states, Si ∈ {−1,1}, where their
bipolar activation units are either 1 or −1 [28].

Equation (3) shows the neuron state activation units in a more precise form.

Si =
{

1 if
∑

j Wi jS j > ξi

−1 otherwise ,
(3)

where Wi jis the neuron synaptic weight from unit j to i. Thus, the state S j denotes the state
of a neuron corresponds to unit neuron j. On the other hand, ξi depicts the threshold unit of
the neuron i. Therefore, the connection in the Hopfield network naturally has no connection
with itself Wii = 0 or Wj j = 0. Moreover, the EHNN comprises of an array of symmetrical
weights. Notionally, the Hopfield neural network works asynchronously with each neuron
by deterministically updating their state. The system consists of N formal neurons, each is
described by an Ising variable. The neurons are bipolar Si ∈ {1,−1} following the dynamics
Si → sgn (hi) whereby the local field denotes as hi . The local field function of HNN is given as
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follows:

hi =
∑
k

∑
j

Wi jkS jSk +
∑

j
Wi jS j +Wi . (4)

Since the synaptic weight in HNN is always symmetrical and without zero diagonal, the
updating rule is maintained as in equation (5):

Si (t+1)= sgn [hi (t)] , (5)

whereby sgn is a signum function. According to equation (4) the updating rule decreases
monotonically with the dynamics. In standard HNN, the state of the network changes from a
initial state to a final state where it is a global minimum of the Lyapunov function [24,35].

ELyapunov = . . .− 1
2

∑
i

∑
j

Wi jSiS j −
∑

i
ξiS j . (6)

In HNN, the energy function is a dynamic filtering paradigm of global minima solution or
local minima solution. Therefore, equation (6) is recrafted into 3-SAT Lyapunov energy that
accommodates more complex order of neurons as shown in equation (7).

E =−1
3

∑
i

∑
j

∑
k

Wi jkSiS jSk −
1
2

∑
i

∑
j

Wi jSiS j −
∑

i
WiSi . (7)

Additionally, the energy function verifies the degree of convergence of the HNN in doing 3-SAT
logic programming. Sibi et al. [21] defines the Elliot symmetric activation function as a variant of
transfer function with sophisticated and swiftness approximation. Hence, this Elliot symmetric
activation function is a simple function without connection of exponential or trigonometric
functions. Consequently, the following equation manifests the output classification via the Elliot
activation function proposed by Mansor et al. [22].

g(hi)=
{

1 f (hi)≥ 0
−1 otherwise

(8)

whereby

f (hi)= hi

1+|hi|
, (9)

where hi represents the local field as in equation (4) of the EHNN network. The hybridization
of Elliot symmetric activation and HNN has formed Elliot Hopfield neural network (EHNN).
Hence, in order to bridge the 3-SAT and EHNN, we require a systematic and robust learning
algorithm such as metaheuristic algorithm. In this paper, we proposed a newly artificial immune
system (AIS) algorithm and the performance the learning method with EHNN will be compared
with genetic algorithm (GA) and exhaustive search (ES).

4. Modified Artificial Immune System Algorithm
The building block of modified artificial immune system algorithm is based on the clonal
selection theory inspired by the maneuver of biological immune system in fighting the pathogen.
In this paper, a newly modified artificial immune system with Elliot Hopfield neural network
is proposed in 3-Satisfiability logic programming. A prolific amount of works on artificial
immune system algorithms ranging from the constraint optimization, real-life applications and
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numerical optimization have been the motivation of applying that algorithm in doing 3-SAT
logic programming.

The work by Timmis and Neal [32] discussed the comprehensive implementation of restricted
binary AIS in processing numerous real-life data mining. The modified AIS in this work is based
on Layeb [19] proposed affinity-based function for artificial immune system (AIS) algorithm
with the tabu search approach. Hence, we formulated the cost function as the affinity function
of the B-cells (solutions) to comply with discrete 3-SAT logic programming.

The AIS algorithm involves a few stages. Firstly, the 3-SAT interpretations were illustrated
as the B-cells in an immune system. For instance, if an antigen or pathogen attacks the
organism, the antibodies (B-cells) that identify these antigens will survive. Thus, we will
be able to calculate the fitness of the B-cells via affinity function. Moreover, the affinity of
every B-cells was computed based on the number of satisfied clauses in the 3-SAT formula.
During the selection process, a particular number of B-cells with better affinity value will
be selected. Pursuing that, the selected B-cells could be cloned and duplicated by utilizing
the classical roulette wheel paradigm by Kumar [17]. The remarkable operator in AIS is the
somatic hypermutation will improve the B-cells. Finally, the newly improved B-cells with
maximum affinity will be stored into the memory cells. In this research, the B-cells refer to the
interpretation and the memory cells denote content addressable memory (CAM) in EHNN.

Figure 1:Illustration

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Illustration of the biological artificial immune system process.artificial immune system process. Figure 1. Illustration of the biological artificial immune system process

The implementation of the modified artificial immune system algorithm is summarized as
follows:

Stage 1: B-cells Initialization
Initialize the population of 100 B-cells (interpretations) in the system. The ideal initial B-cells
complies with the work of Layeb [19].

Stage 2: Affinity Evaluation
Compute the affinity of every respective B-cells from the populations in Stage 1. Affinity measure
refers to the entire number of satisfied clauses per interpretation for a particular 3-SAT formula.
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Next, the modification is made in terms of the affinity evaluation to comply with and fulfill our
3-SAT programming problem. Hence, the affinity can be calculated as follows:

faffinity = c1(x)+ c2(x)+ c3(x) . . .+ ctotal NC(x) , (10)

where c represents the number of clauses during learning phase and NC symbolizes the number
of clauses embedded into the 3-SAT formula. Similarly, equation (10) will assess the affinity of
the individual B-cells (interpretation) before proceeding to the next operator.

Stage 3: Selection
Select the best 5 B-cells with the top maximum affinity. Next, the selected B-cells will be chosen
to undergo the cloning operator to further diversify the population to attain better affinity.

Stage 4: Cloning
The cloning starts with the replicating the selected B-cells by using the classical roulette wheel
selection to the system [17]. After that, the B-cells will evolve until the production of 200 B-cells.
The number of cloned B-cells complies with the work of [19, 32]. In addition, the number of
cloned B-cells can be computed as follows:(

The number of
clone allowed

)
= affinityi∑

affinity
×β , (11)

where affinityi refers to the initial affinity observed by the system and β is the number of
population clone that is introduced to the system. Due to good agreement with the work of
Layeb [19], β= 200 is selected as a fixed parameter.

Stage 5: Normalization
Normalization is the affinity standardization process before further improvement is made
during the Hypermutation operator. The normalization of the B-cells is also called maturation of
the immune response. The standard formulation for B-cells normalization is given in equation
(12).

affinity Ni =
affinityi −minaffinity

maxaffinity−minaffinity
, (12)

where af f inityNi refers to the normalized affinity.

Stage 6: Somatic Hypermutation
Somatic hypermutation operator will enhance B-cells to achieve the maximum affinity that will
converge towards a feasible solution. Theoretically, the somatic hypermutation is more powerful
than the normal mutation due to the concept of the nearer the match, the more disruptive the
mutation. Specifically, the B-cells (interpretation) flipping will enhance the solution to obtain
the maximum affinity values [33]. That mechanism works by randomly flipping the one or more
string of the B-cells from −1 to 1 or vice versa. The number of mutation can be determined by
equation (13).(

Number of
Mutation (Nb)

)
=

(
1

Number of variable

)
(affinity Ni)+ (1−affinity Ni) (0.01) . (13)
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Next, the affinity of the new generation of B-cells will be calculated. If the value of affinity is
equivalent to the number of clauses, the solution will be selected. Consequently, if a particular
of B-cells fails to attain the required affinity, Stage 1 until Stage 6 will be repeated until the
maximum affinity is achieved.

In this research, any satisfied interpretation (B-cells with maximum affinity) will be kept in
CAM to be retrieved by the Elliot Hopfield neural network.

5. Genetic Algorithm and Exhaustive Search
In this section, the fundamental concept and procedure of both standard searching techniques
are discussed.

A. Genetic Algorithm
In this work, the standard genetic algorithm procedure will be applied to our Elliot Hopfield
neural network. Genetic algorithm is a population-based evolutionary searching paradigm
enthused by the notable Darwin’s theory of evolution [1,8]. Thus, the interpretation (bit strings)
is represented by an array of complicated biological units, namely chromosomes in our DNA.
The inaugural work by Holland demonstrates the effectiveness of GA in finding the feasible
solutions of computational intractable problem with high complexity.

Specifically, GA is a standard metaheuristic paradigm, commonly applied as the indicator
of the capability of the proposed computational network. Hence, the standard GA proposed by
Aiman and Asrar [1] will be integrated into the Hopfield neural network with Elliot activation
function.

The process in GA involves five main stages:

Stage 1: Chromosomes Initialization
Randomize 100 chromosomes as the bipolar interpretations. Therefore, the chromosomes will
represent the possible interpretation for EHNN-3SAT.

Stage 2: Fitness evaluation
Compute the fitness of the respective chromosomes according to the number of satisfied clauses
in each of the interpretation. The maximum fitness implies the effectiveness of the learning
process.

Stage 3: Selection stage
10 candidate chromosomes that have recorded the maximum fitness among the 100 chromosomes
will continue to the following generation and stage of GA. After that, the selected chromosomes
will be facing crossover procedure to enhance the fitness and variability.

Stage 4: Crossover Operator
The crossover process involves the main genetic alteration process in GA. Furthermore, the
genetic exchange of information among two sub-structure of the chromosomes (bit strings)
occurs here. As an illustration:
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Before Crossover
Chromosome X = 1 −1 −1 1 1 −1
Chromosome Y = 1 1 1 1 1 1

Post Crossover
Chromosome X = 1 −1 −1 1 1 1
Chromosome Y = 1 1 1 1 1 −1

The crossover point in individual chromosomes is erratically described to retain the genetic
diversity of the chromosomes [1]. Crossover usually increases the number of the satisfied clause
of the newly chromosome pairs. This benefits the best chromosome of the generation to survive
and undergo enhancement during the mutation operator.

Stage 5: Mutation
Henceforth, the non-improving interpretations will be improved during the mutation.
Theoretically, the mutation in GA involves flipping of the state of the bit string from 1 to
−1 or vice versa. Hence, the chromosome point of the mutation is set to be random. As an
illustration:

Pre-mutation operator
Chromosome Z = −1 1 1 −1 −1 −1

Post mutation operator
Chromosome Z = −1 1 1 −1 1 −1

Based on the illustration, the fifth position of the chromosome was flipped instantaneously
from −1 to 1. Consequently, the fittest chromosome will be produced after mutation operator.
Finally, the fitness for the newly produced chromosomes will be assessed and calculated. If the
fitness value still has not reach the maximum fitness, the first stage will be repeated.

B. Exhaustive Search
Exhaustive search (ES) algorithm is commonly used in training the Hopfield neural network. It
involves the process of enumeration and brutal search for the satisfied interpretation in logic
programming [9]. The searching process will hunt for the feasible interpretation even if the
search space or dimension is evolving due to complexity [34]. In layman’s term, ES is basically
the trial and error searching paradigm. In this work, the correct interpretation will be deposited
in Content Addressable Memory (CAM) before undergoing a training process. The ES algorithm
has been explored in a plethora of works, generally in constraint satisfaction and constraint
optimization problem. Hence, the objective function of ES is denoted as follows:

max{ fES} . (14)

In this research, the ES algorithm is simplified into three main stages:

Stage 1: String Initialization
Initialize and enumerate the interpretations according to the number of literals and clauses.
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Stage 2: Fitness Evaluation
Evaluate and calculate the fitness of the interpretation by utilizing equation (15).

fExhaustive_Search = c1(x)+ c2(x)+ c3(x) . . .+ ctotal NC(x) , (15)

where NC indicates the clausal number and c signifies to the clauses in the interpretation.

Stage 3: Selection
The interpretation with the maximum fitness will be selected as an output and stored into
EHNN. Then, the non-improving interpretation is enumerated by reimplementing Stage 1.

6. Performance Evaluation Metrics
To assess the capability of EHNN-3SATAIS, EHNN-3SATGA and EHNN-3SATES,
3 performance evaluation metrics were considered. The goodness of fit measure, known as
the mean absolute error (MAE) was selected as accuracy indicator. Then, the model selection
and robustness indicators namely, Schwarz Bayesian Criterion (SBC) and CPU Time were also
applied.

A. Mean Absolute Error (MAE)
The MAE is widely applied because the capability in error estimation [39]. Willmott and
Matsuura [38] recognized the MAE as one of reliable performance measures to detect the
accumulation of uniformly distributed error. According to Pwasong and Sathasivam [26], the
MAE is calculated by taking the absolute value of the difference between the estimated forecast
and the actual value over a number of iterations. Typically, the MAE is minimally prone to
outliers as asserted by Shi et al. [30]. The standard MAE formula by Chai and Drexler [3] is
given as follows:

MAE=
n∑

i=1

1
n
|( fmax − f i)| . (16)

where fmax represents the maximum fitness supposed to be measured from the network and f i

denotes the fitness obtained after execution.

B. Schwarz Bayesian Criterion (SBC)
Schwarz Bayesian Criterion (SBC) is used extensively in model selection and appraisal as
introduced by Schwarz [29]. Specifically, it is coherent, reliable, unbiased and precise indicator
for choosing the best computational model. Furthermore, it is sensible to formulate the number
of parameters that are as small as possible. In term of evaluation, the best model corresponds
to the minimal value of SBC after the execution. The main motivation of using SBC is based on
Hamadneh [10] that utilized the SBC as the indicator to determine the ideal logic programming
model. Thus, the general formula of SBC as asserted by Hamadneh [10] is as follows:

SBC = n ln(MSE)+ pa ln(n) , (17)

whereby n refers to total number of iterations, pa is the magnitude of free parameters and
mean square error (MSE). Since the Hopfield neural network is free from any pa, the equation
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has been recrafted for our case:

SBC = n ln(MSE) , (18)

where the MSE is measured in calculating SBC and n depicts the number of iterations during
the simulation. Hence, the formula of MSE is given as follows:

MSE = 1
n

n∑
i=1

( fmax − f i)2 , (19)

where fmax refers to the maximum fitness supposed to be and f i denotes the fitness recorded
during each of the execution.

C. CPU Time
The CPU time is commonly used as indicator of robustness of a particular computational model.
Generally, CPU time refers to the total expanse time recorded by a model to execute the whole
simulation. In this research, the SI unit of second will be used as the unit of CPU Time. Moreover,
the CPU Time is utilized to evaluate the robustness of EHNN-3SATES, EHNN-3SATGA and
EHNN-3SATAIS. The formula of CPU Time is given as follows:

CPU Time (s)=Training Time+Retrieval Time . (20)

The CPU time is considered as the robustness indicator of the model [35,40].

7. Implementation
The comprehensive computer simulations for EHNN-3SATAIS, EHNN-3SATGA, and EHNN-
3SATES were performed by using Dev C++ Version 5.11 as a platform and carried out on
Windows 10.1, Intel Core i7, 2.7 GHz processor with 8GB RAM.

Step 1
Translate the 3-SAT formula containing different number of clauses into a Boolean algebra
form. Define inconsistencies of the formula.

Step 2
Allocate neuron to every literal of 3-SAT clauses. Next, check inconsistency of the 3-SAT logic
and formulate the cost function of 3-SAT logic formula, Ep .

Step 3
Compute the cost function of the network. For instance, the building blocks of the cost function
are given as Z = 1

2 (1+SZ) and Z = 1
2 (1−SZ). The state of the neuron during training with

EHNN network will become true if SZ = 1 and falsified if SZ =−1.

Step 4
Check clause satisfaction by using EHNN-3SATES, EHNN-3SATGA or EHNN-3SATAIS until
the network converge to Ep = 0. Then, the satisfied interpretation will be deposited as content
addressable memory (CAM) in Elliot Hopfield neural network to be used during retrieval phase.
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Step 5
By equating the cost function,Epwith energy function, E to obtain the magnitudes of the
connection weights of the network.

Step 6
Compute the expected global minimum energy that is supposed to be by using equation (7).

Step 7
Determine the respective local field, hi for all neurons by implementing equation (4).

Step 8
Update local field via Elliot activation function by using equation (8) or equation (9).

Step 9
Compute the corresponding final energy based on the final states updated by using equation
(7). According to Sathasivam [28], Tol= 0.001 is considered as a standard termination criterion
for Lyapunov energy function to systematically classify the minimum energy. Henceforth, each
execution considers 100 trials with 100 neuron combinations to reduce the statistical error per
execution. Thus, the simulations are repeated by using a different number of neuron (NN) until
NN= 180.

8. Results and Discussion
The comparative analysis of EHNN-3SATAIS, EHNN-3SATGA, and EHNN-3SATES based on
3 performance valuation metrics, namely MAE, SBC and CPU time. The results are portrayed
in Figure 2 until Figure 4, respectively. The results were attained from the computer simulation
via Dev C++ Version 5.11 from NN = 9 until NN = 180.

A. Mean Absolute Error (MAE)
The values of MAE for EHNN-3SATASI, EHNN-3SATGA and EHNN-3SATES were recorded
and analyzed to assess the performance of these models.

Figure 2 manifests the mean absolute error (MAE) recorded for EHNN-3SATES, EHNN-
3SATGA, and EHNN-3SATAIS correspondingly after a single execution with a different number
of neuron (NN). Based on MAE recorded from NN = 9 until NN = 180, EHNN-3SATAIS
outclassed the EHNN-3SATGA and EHNN-3SATES during the learning phase. Generally, the
results demonstrate the magnitudes of MAE for EHNN-3SATAIS are significantly smaller
than the other two counterparts even though the number of neurons (NN) have increased. This
reveals that the interpretations generated from EHNN-3SATAIS are less deviated from the
feasible solutions.

When modified AIS algorithm was applied during learning process, the probability of
generating correct interpretations will be particularly higher. The effective global and local
search techniques in EHNN-3SATAIS during cloning and somatic hypermutation operator has
improved the affinity of B-cells (interpretations). In fact, the somatic hypermutation in AIS
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differs with mutation operator in GA in the way of the flipping process. Somatic hypermutation
in EHNN-3SATAIS will enhance the probability of B-cells in attaining possible maximum
affinity before being stored in HNN (Layeb, 2012). According to optimization standpoint, less
iterations were needed in generating the interpretations with the highest affinity regardless
the complexity will become higher. Furthermore, EHNN-3SATAIS could sort the enumerate
and generate the 3-SAT interpretations effectively and can withstand more number of neurons
as compared to the EHNN-3SATES and EHNN-3SATGA.

 

 

Figure 2: Mean absolute error (MAE) for EHNN models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean absolute error (MAE) for EHNN models

Conversely, EHNN-3SATES records a significantly higher value MAE from NN = 9 until
NN = 108. This suggests that the EHNN-3SATES experiences massive memory deterioration
due to the complexity devoured during the learning phase of the network. Furthermore, the
mechanism of the EHNN-3SATES that deploys the “generate and test” method to enumerate
the correct solutions in a search space of the network [23]. Consequently, the MAE for EHNN-
3SATES is significantly higher than EHNN-3SATES and EHNN-GA. It is shown that more
iterations needed to generate the satisfied interpretation during the learning phase of EHNN-
3SATES. Moreover, the MAE obtained by EHNN-3SATGA are slightly lower than EHNN-
3SATES and significantly higher than EHNN-3SATAIS. The EHNN-3SATGA improves the
chromosomes (interpretations) before undergoing the crossover operator and requires less
iterations compared to EHNN-3SATES [1]. For instance, the solutions will be improved using
the mutation process to attain maximum fitness in EHNN-3SATGA. In general, the value of
MAE will be increasing as the number of neurons increase. Therefore, this is due to the number
of clauses corresponds to the number of neurons during the learning phase of the network.

B. Schwarz Bayesian Criterion (SBC)
In this study, Schwarz-Bayesian information criterion (SBC) is used to measure the capability of
the computational model. The mean square error (MSE) is taken into account when computing
the SBC values. The relationship between these two units can be formulated. Hence, in general
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when the MSE is lower, the SBC will be apparently lower. According to Hamadneh (2013), the
best computational model will be chosen among the lowest SBC value during the execution.
Cumulatively, the MSE during learning and retrieval phase will be utilized in determining the
SBC value.

 
 

Figure 3: Schwarz-Bayesian information criterion (SBC) for EHNN models 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schwarz-Bayesian information criterion (SBC) for EHNN models

Figure 3 illustrates the SBC recorded for EHNN-3SATAIS, EHNN-3SATGA, and EHNN-
3SATES during the learning phase of the network. Based on SBC evaluation, it was clearly
shown that EHNN-3SATAIS outclasses the EHNN-3SATGA and EHNN-3SATES. For this
reason, the optimization operator such as somatic hypermutation in AIS will make the
searching process much easier without consuming extra iterations. In fact, the non-improving
interpretations will be enhanced via somatic hypermutation operator during learning phase in
EHNN. On contrary, the SBC for EHNN-3SATGA is apparently higher than EHNN-3SATAIS
due to early improvement in order for the crossover process to take place. Therefore, EHNN-
3SATES has recorded the accumulation of MSE during learning and retrieval phase due to more
iterations needed to attain the convergence. The accumulation of MSE will penalize the SBC
values. Thus, the SBC for EHNN-3SATES is the highest compared to the other two counterparts.
In term of SBC evaluation, EHNN-3SATAIS is an acceptable approach than EHNN-3SATGA
and EHNN-3SATES.

C. CPU Time
The robustness of EHNN-3SATAIS, EHNN-3SATGA, and EHNN-3SATES can be assessed
based on the elapsed time for a complete simulation with a different number of neuron (NN).

Figure 4 depicts the CPU time taken for the EHNN-3SATAIS, EHNN-3SATGA, and EHNN-
3SATES from NN = 9 until NN = 180. The learning phase needs to be enhanced by using
the effective global or local search techniques. Moreover, Figure 4 manifests that the EHNN-
3SATAIS outperforms the other two counterparts, EHNN-3SATES and EHNN-3SATGA. The
CPU Time of EHNN-3SATAIS is obviously faster due to the capability of B-cells (interpretations)
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to navigate and converge towards the maximum affinity. As discussed, this is due to the fact that
the somatic hypermutation will improve the affinity in fewer iterations. On the contrary, EHNN-
3SATGA is apparently faster than EHNN-3SATES because of the genetic diversity operators
such as crossover and mutation. Both operators have enhanced the non-improving interpretation
in attaining the convergence [25]. Thus, EHNN-3SATES experience the slowest convergence
during learning phase of the network because of the extensive iterative process by deploying
“trial and error” in enumerating the correct interpretation. Henceforth, EHNN-3SATAIS
experiences minimum computational burden throughout the learning phase in generating the
satisfied interpretations as compared to EHNN-3SATGA and EHNN-3SATES. As the number
of neurons increases, the CPU time also increases for EHNN-3SAT models. All in all, the MAE,
SBC and CPU Time have proved the effectiveness of the proposed algorithm in term of accuracy,
sensitivity, and robustness.

 

 

Figure 4. CPU Time for EHNN models 

 

 

 

Figure 4. CPU Time for EHNN models

9. Conclusion
We have investigated the effectiveness of EHNN-3SATAIS, EHNN-3SATGA, and EHNN-
3SATES in 3-SAT programming. It was shown that EHNN-3SATAIS had outperformed the
other two models in terms of MAE, SBC and CPU Time recorded during the simulation by using
a different number of neurons. Our work can be developed further by exploring other variants
of the satisfiability problem to see whether our model will comply with other higher-order
satisfiability logic.
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