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Abstract. In this paper, heat transfer of a steady, two-dimensional, incompressible Cu-water nanofluid
flow over a moving wedge in the presence of thermal radiation effect are investigated. Gyarmati’s
variational principle developed on the thermodynamic theory of irreversible processes is employed
to solve the problem numerically. The governing boundary layer equations are approximated as
simple polynomial functions, and the functional of the variational principle is constructed. The
Euler-Langrange equations are reduced to simple polynomial equations in terms of boundary layer
thicknesses. The velocity and temperature profiles as well as skin friction and heat transfer are
analyzed for various parameters. The obtained numerical solutions are compared with the previously
published results and are found to be in good agreement.
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1. Introduction
Nanotechnology has been widely used in many industrial applications. Nanofluids are
engineered colloids made of a base fluid and nanoparticles. Nanofluids have higher thermal
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conductivity and single-phase heat transfer coefficients than the base fluids. The term nanofluid
was coined by Choi [1]. The boundary layer flow over a static or moving wedge in nanofluid
has been considered by Yacob et al. [2], which is an extension of the flow over a static wedge
considered by Falkner and Skan [3].

Kameswaran et al. [4] investigated heat and mass transfer from an isothermal wedge in
nanofluids with soret effect. Shanmugapriya and Chandrasekar [5], analyzed the problem
of free and forced convection with suction and injection over a non-isothermal wedge. The
present paper will study the boundary-layer and heat transfer for a moving wedge immersed in
Cu-water nanofluid in the presence of thermal radiation.

The object of the present paper is to study the boundary layer flow and heat transfer for a
moving wedge immersed in Cu-water nanofluid in the presence of thermal radiation by using
Gyarmati’s variational technique. This technique is one of the most general and exact variational
technique in solving flow and heat transfer problems. Shanmugapriya [6], Chandrasekar and
Kasiviswanathan [7] already applied this technique for steady and unsteady, heat and mass
transfer and boundary layer flow problems.

Section 2 presents the mathematical model of the problem. The numerical procedure is
obtained in Section 3 and 4. Results and discuss are presents in Section 5. Section 6 presents
some useful conclusion.

2. Mathematical Formulation
Consider a steady two-dimensional laminar boundary layer flow of an incompressible viscous
nanofluid (Cu-water) of density ρnf and temperature T∞ moving over a wedge moving with
the velocity uw(x). Choose the co-ordinate system such that x-axis is along the surface of the
wedge and y-axis normal to the surface of the wedge. Further it is assumed that the velocity of
ambient fluid is ue (x)=U0xm and the velocity of the moving wedge is uw (x)=Uwxm, where U0,
Uw and m are all constant with 0≤ m ≤ 1. Here m =β/(2−β), where β is the Hartree pressure
gradient parameter that corresponds to β=Ω/π for the total wedge angle Ω. Thermal radiation
is included in the energy equation. The governing equations for this case can be written as
(Tiwari and Das [8])

∂u
∂x

+ ∂v
∂y

= 0 , (1)

u
∂u
∂x

+v
∂u
∂y

= ue (x)
∂ue (x)
∂x

+ µnf

ρnf

∂2u
∂y2 , (2)

u
∂T
∂x

+v
∂T
∂y

=αnf
∂2T
∂y2 − 1

(ρcp)nf

∂qr

∂y
(3)

subject to the boundary conditions

y= 0; u = uw (x)=Uwxm, v = 0, T = Tw

y→∞; u = ue (x)=U0xm, T → T∞ (4)
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Here u, v are the velocity components along x and y axes, respectively, T is the temperature of
the nanofluid in the boundary layers, µnf is the viscosity of the nanofluid, ρnf is the density
of the nanofluid, αnf is the thermal diffusivity of the nanofluid, which are given by Oztap and
Abu-Nada [9].

The effective dynamic viscosity of the nanofluid is given as

µnf =
µ f

(1−ϕ)2.5 , (5)

where ϕ is the solid volume fraction of nanoparticles.

The effective density of the nanofluids is given as

ρnf = (1−ϕ)ρ f +ϕρs . (6)

The thermal diffusivity of the nanofluid is

αnf =
knf

(ρcp)nf
, (7)

where the heat capacitance of the nanofluid is given by

(ρcp)nf = (1−ϕ)(ρcp) f +ϕ(ρcp)s . (8)

The thermal conductivity of nanofluids restricted to spherical nanoparticles is
knf

k f
=

(
ks +2k f

)−2ϕ(k f −ks)(
ks +2k f

)+2ϕ(k f −ks)
. (9)

Here, the subscript nf , f and s represent the thermophysical properties of the nanofluid,
base fluid and nano solid particles, respectively.

Making use of the Rosseland approximation for radiation for an optically thick layer
(Brewster [10]), we have

qr = −4σ
3k∗

∂T4

∂y
, (10)

where σ is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. If
temperature differences within the flow are sufficiently small such that T4 may be expressed as
a linear function of the temperature, then the Taylor series for T4 about T∞ after neglecting
higher order terms, is given by

T4∼=4T3
∞T −3T4

∞ . (11)

In view of equations (10) and (11), equations (3) reduces to

u
∂T
∂x

+v
∂T
∂y

=αnf
∂2T
∂y2 − 16σT3∞

3k∗(ρcp)nf

∂2T
∂y2 . (12)

3. Gyarmati’s Variational Principle

Gyarmati introduced a genuine variational principle called the “Governing Principle of
Dissipative Processes” (GPDP) which is given in its energy picture

δ

∫
V

[Tσ−TΨ−TΦ]dV = 0. (13)
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Here the energy dissipation Tσ and dissipation potentials TΨ, TΦ are given by

Tσ=−P12
∂u
∂y

− Jq
∂ lnT
∂y

,

TΨ= 1
2

[
Ls

(
∂u
∂y

)2
+Lλ

(
∂LnT
∂y

)2]
and

TΦ= 1
2

[
RsP2

12 +RλJ2
q
]
,

where P12 =
(
−Ls

∂u
∂y

)
and Jq =

(
−Lλ

∂T
∂y

)
are heat and momentum fluxes, respectively. The

constants L’s and R ’s represent conductivities and resistances. It is well known that ‘lnT ’ is
the proper state variable instead of T when the governing principle assumes energy picture.

The variational principle (13) for the present problem takes the form

δ

∫ l

0

∫ ∞

0

{
−Jq

∂ lnT
∂y

−P12
∂u
∂y

− 1
2

[
Lλ

(
∂ lnT
∂y

)2
+Ls

(
∂u
∂y

)2]
− 1

2
[
RλJ2

q +RsP2
12

]}
d ydx = 0. (14)

In which ‘l ’ is the representative length of the surface.

4. Method of Solution
The velocity and temperature fields inside the respective boundary layers are approximated as
a fourth degree polynomial function.

(u−uw)
(ue −uw)

= 3y
d1

− 3y2

d2
1
+ y3

d3
1

, (y< d1)

u = ue , (y≥ d1)

(T −T∞)
(Tw −T∞)

= 1− 3y
2d2

+ y3

2d3
2

, (y< d2)

T = T∞ , (y≥ d2)


(15)

where d1 and d2 are hydrodynamical and thermal boundary layer thicknesses, respectively.
The velocity and thermal profiles (15) satisfy the following compatibility conditions:

y= 0; u = uw (x)=Uwxm, v = 0, T = Tw

y= d1; u = ue (x)=U0xm,
∂u
∂y

= 0,
∂2u
∂y2 = 0

y= d2; T = T∞,
∂T
∂y

= 0,
∂2T
∂y2 = 0.


(16)

Using the boundary conditions (16), the transverse velocity component v is obtained from the
mass balance eq. (1) as

v = [
m (U0 −Uw) xm/x

][
−3y2

2d1
+ y3

d2
1
− y4

4d3
1

]
+ (U0 −Uw) xm

[
3y2

2d2
1
− 2y3

d3
1
+ 3y4

4d4
1

]
. (17)

To formulate Gyarmati’s variational principle the velocity and temperature functions (15)
are substituted in the momentum and energy balance eqs. (2) and (12), and on direct integration
with respect to y with the help of smooth fit boundary conditions ∂u

∂y = 0 and ∂T
∂y = 0 the fluxes
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P12 and Jq are obtained respectively as given below.

−P12

Ls
= ρnf

µnf

[
m (U0 −Uw)2x2m

x

] [
−0.5357d1 + 4.5y3

3d2
1

− 3y4

2d3
1
+ 3.75y5

5d4
1

− 1.5y6

6d5
1

+ 0.25y7

7d6
1

]

+ ρnf

µnf

[
(U0 −Uw)2x2md′

1
][

0.10714− 4.5y3

3d3
1

+ 3y4

d4
1
− 11.25y5

5d4
1

+ 4.5y6

6d6
1

− 0.75y7

7d7
1

]

+ ρnf

µnf

[
mUw (U0 −Uw) x2m

x

][
−1.5+ 3y2

d1
− 2y3

d2
1
+ y4

2d3
1

]

+ ρnf

µnf

[
Uw (U0 −Uw) x2md′

1
][

0.25− 3y2

2d2
1
+ 2y3

d3
1
− 3y4

4d4
1

]

+ ρnf

µnf

[
m

(
U2

0 −U2
w

)
x2m

x

]
[d1 − y] (18)

− Jq

Lλ
=

[
Pr (U0 −Uw) (Tw −T∞) xm

ϑ f
(
1+ 4

3R
) d′

1

][
0.3d2

2

d2
1

− 0.25d3
2

d3
1

+ 0.06429d4
2

d4
1

− 9y3

12d2
1d2

+ 6y4

8d3
1d2

− 9y5

40d4
1d2

+ 9y5

20d2
1d3

2
− 6y6

12d3
1d3

2
+ 9y7

56d4
1d3

2

]

+
[

Pr (U0 −Uw) (Tw −T∞) xm

ϑ f
(
1+ 4

3R
) d′

2

][
−0.6d2

d1
− 1.875d2

2

d2
1

− 0.08571d3
2

d3
1

+ 9y3

6d1d2
2
+ 9y4

8d2
1d2

2
+ 3y5

10d3
1d2

2
− 9y5

10d1d4
2
+ 9y6

12d2
1d4

2
− 3y7

14d3
1d4

2

]

+
[

PrUw (Tw −T∞) xm

ϑ f
(
1+ 4

3R
) d′

2

][
−0.375+ 3y2

4d2
2
− 3y4

8d4
2

]

+
[

Prm (U0 −Uw) (Tw −T∞) xm

ϑ f x
(
1+ 4

3R
) ][

−0.3d2
2

d1
+ 0.125d3

2

d2
1

− 0.02143d4
2

d4
1

+ 9y3

12d1d2
− 3y4

8d2
1d2

+ 3y5

40d3
1d2

− 9y5

20d1d3
2
+ 3y6

12d2
1d3

2
− 3y7

56d3
1d3

2

]
(19)

Using the expressions P12 and Jq along with trial functions (15), the variational principle
(14) is formulated. On integration with respect to y, the variational principle becomes us

δ

∫ l

0
L2

[
d1,d2,d′

1,d′
2
]
dx = 0; Pr ≥ 1 (20)

where L1 and L2 are the Lagrangian densities of the principle.

The boundary layer thicknesses d1 and d2 are the independent parameters to be calculated
and the Euler-Lagrange equations corresponding to these variational principles are(

∂L1,2/∂d1
)− (d/dx)

(
∂L1,2/∂d′

1
)= 0 and

(
∂L1,2/∂d2

)− (d/dx)
(
∂L1,2/∂d′

2
)= 0 , (21)

where L1,2 represents the Lagrangian densities L1 and L2, respectively. The equations (20)
and (21) are second order ordinary differential equations in terms of d1 and d2, respectively.
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We now introducing the non-dimensional boundary layer thicknesses d∗
1 and d∗

2 for solving
these equations and are given by

d1 = d∗
1

√
ϑ f x/ue (x) and d2 = d∗

2

√
ϑ f x/ue (x) . (22)

The Euler-Lagrange equations of the transformed principle assume the simple forms(
∂L1,2/∂d∗

1
)= 0 and

(
∂L1,2/∂d∗

2
)= 0 . (Pr ≥ 1) (23)

The coefficients of the equations (22) depend on the independent parameters Pr , R, λ and ϕ,
where Pr = ν f /α f (Prandtl number) R = knf k∗/4σT3∞ (Radiation parameter), λ=Uw/U0 (ratio
of the wall velocity to the free stream fluid velocity), λ(> 0) corresponds to the situation when
the wedge moves in the same direction to the free stream and λ (< 0) when the wedge moves in
the opposite direction to the free stream, while λ= 0 corresponds to a static wedge and ϕ (Solid
volume fraction).

After obtaining the values of d∗
1 and d∗

2 for the given values of Pr , R, λ and ϕ the velocity
and temperature profiles, velocity and temperature gradients, skin friction and heat transfer
values are calculated with the help of the following relations, respectively.

η= y
√

(m+1)ue (x)
/

2ϑ f x , (24)

C f =µnf
[
(−P12/Ls)y=0

/
ρ f (ue (x))2] , (25)

Nux =−
[

xknf

(
− Jq

Lλ
− qr

)
y=0

/
k f (Tw −T∞)

]
. (26)

Following Oztop and Abu-Nada [9], the value of the Prandtl number Pr is taken as 6.2 (for
water) and the volume fraction of nanoparticles is from 0 to 0.2. The thermophysical properties
of the fluid and nanoparticles are given in Table 1.

Table 1. Thermophysical properties of the base fluid and the nanoparticles

Physical properties Fluid phase (water) Cu

Cp (J/kg K) 4179 385

ρ (kg/m3) 997.1 8933

k (W/m K) 0.613 400

α×10−7(m2/s) 1.47 1163.1

5. Results and Discussion
Figure 1 and 2 shows the effect of the velocity ratio parameters λ on velocity and temperature
profiles for R = 1 and ϕ= 0.1, respectively. These figures show that there are regions of unique
solutions for λ>−1 and dual solutions for λc <λ=−1. The velocity profiles for unique solution
increases with increasing value of λ. The first solution of velocity profiles exhibit the identical
characters as that of the velocity profiles for unique solution and reverse nature is noticed for
the case of the second solution. From Figure 2, it is noticed that the temperature profiles for
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first solution decreases for an increase of λ and it decreases for the second solution also the
unique solution of temperature profiles is similar to the profiles of the first solution.

 

Figure 1. Velocity profile for different values of λ when R = 1, ϕ= 0.1 and m = 1

 

 

Figure 2. Temperature profile for different values of λ when R = 1, ϕ= 0.1 and m = 1

Figures 3 and 4 represent the velocity and temperature profiles at λ= 1.2 and λ=−1.2 for
different values of radiation parameters R. From Figure 3, it is observed that the radiation
parameter has a negligible effect on the velocity profiles. When λ= 1.2 there is only a unique
solution and the temperature profiles are decreasing with an increase of radiation parameter,
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the different behavior is appears when λ=−1.2. The temperature profile of the first solution
increases with an increase in R within the thermal boundary layer and the reverse is seen away
from the surface. Also, it is observed that, far away from the surface, the temperature profile for
the second solution exhibit the identical characters as that of the first solution. For λ=−1.2,
the temperature inside the boundary layer for the first solution is high for large value of R,
while outside the boundary layer, the temperature is low with large value of R. For the second
solution the behavior is similar, far away from the surface.

 

Figure 3. Velocity profile for different values of R when ϕ= 0.1 and m = 1.

 

Figure 4. Temperature profile for different values R when ϕ= 0.1 and m = 1.
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Figure 5. Velocity profile for different values of ϕ when R = 1 and m = 1.

 

Figure 6. Temperature profile for different values of ϕ when R = 1 and m = 1.

6. Conclusion
Numerical analysis is carried out to study the problem of steady, two dimensional boundary
layer flow past a moving wedge in a copper-water nanofluid taking into account the effect
of thermal radiation. By GPDP, governing partial differential equations are simplified as
polynomial equations whose coefficients are of independent parameters Pr , R, λ and ϕ. This
variational technique offers a practicing engineer a rapid way of obtaining heat transfer rates
for any combination of these parameters. The advantage involved in this technique is that the
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results are obtained with the high order of accuracy and the time taken to solve the problem is
certainly less when compared with more conventional methods. Hence the practicing engineers
and scientists can apply this unique approximate technique as a powerful tool for solving
boundary layer flow and heat transfer problems.
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