
Journal of Informatics and Mathematical Sciences
Volume 5 (2013), Number 1, pp. 21–28
© RGN Publications

http://www.rgnpublications.com

Existence of Coincidence and Fixed Point Theorems
for Non-linear Hybrid Map on Generalized Space

Abha Singh

Abstract. In a recent paper Pathak et al. [20] established the coincidence
and fixed point theorems for nonlinear hybrid contraction map under f-weak
compatible continuous maps on metric spaces. In this paper we prove coincidence
and fixed point theorems for nonlinear hybrid contraction maps on generalized
metric spaces for multi-valued and single maps. Proved results of this paper to be a
substantial generalization of the corresponding theorem of the recent paper [20].

1. Introduction

There are many coincidence and fixed point theorems for nonlinear hybrid
contraction maps of a closed and bounded subset CB(X ) for a complete metric
space X . However, in many applications, the maps involved may refer to
Hadzic [5], Jungck [8], Kaneko et al. [9–11], Kannan [12], Pathak et al. [17–22],
so it is interest to determine sufficient conditions on nonlinear hybrid maps which
sure the existence of a fixed point. Subsequently, a number of generalizations
of the multi-valued contraction principle for non-linear hybrid contraction maps
obtained may refer to Khan [13], Kubiak [14], Nadler [15], Naimpally et al. [16],
Rhoades et al. [23], Sessa [24], Smithson [29]. In this paper we consider the
hybrid of maps, viz., contractive conditions involving multi-valued and single maps
on a generalized metric space satisfying very general contractive type conditions
which include several general conditions studied by Hematulin and Singh [6],
Pathak et al. [20, 21], Singh et al. [26]. The result of this paper is a substantial
generalization of the corresponding Theorem 1.1 of the recent paper of Pathak,
Khan and Cho [20].
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Theorem 1.1. Let (X , d) be a complete metric space, let f : X → X and P : X →
CB(X ) be f-weak compatible continuous maps such that P(X )⊂ f (X ) and

H(P x , P y)≤ h[aL1(x , y) + (1− a)N1(x , y)] for all x , y in X ,

where 0≤ h< 1, 0≤ a < 1,

L1(x , y) =max
�

d( f x , f y), d( f x , P x), d( f y, P y),
1

2
[d( f x , P y) + d( f y, P x)]

�

and

N1(x , y) =
�

max{d2( f x , f y), d( f x , P x) · d( f y, P y), d( f x , P y) · d( f y, P x),

1

2
[d( f x , P x) · d( f y, P x)],

1

2
[d( f x , P y) · d( f y, P y)]}

� 1
2

.

Then there exists a point z ∈ X such that f z ∈ Pz, i.e. the point z is a coincidence
point of f and P.

2. Preliminaries

In a sequel, we use the following notations and definitions.

Definition 2.1 (Czerwik [1–4]). Let X be (nonempty) a set and s ≥ 1 a given real
number. A function d : X×X → R+ (nonnegative real) is called a b-metric provided
that for all x , y, z ∈ X ,

(bm-1) d(x , y) = 0, iff x = y ,
(bm-2) d(x , y) = d(y, x),
(bm-3) d(x , z)≤ s[d(x , y) + d(y, z)].

The pair (X , d) is called a b-metric space.

We remark that a metric space is evidently a b-metric space. However, Czerwik
[1,2] has shown that a b-metric on X need not be a metric on X (see also [3,27]).
The following example shows that b-metric on X need not be a metric on X .

The following examples show that b-metric on X need not be a metric on X .

Example 2.1. Let X = {x1, x2, x3} and d : X × X → R+ such that

d(x1, x2)= x ≥ 3, d(x1, x3)=d(x2, x3) = 1, d(xn, xn)=0, d(xn, xk)=d(xk, xn).

Then

d(xn, xk)≤
x

3
[d(xn, x i) + d(x i , xk)], n, k, i,= 1, 2, 3.

Then (X , d) is a b-metric space.
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Definition 2.2 (Czerwik [2]). Let (X , d) be a b-metric space. The Hausdorff
b-metric H on C L(X ), the collection of all nonempty closed subsets of (X , d) is
defined as follows:

H(A, B) :=
n

max
n

sup
x∈A

d(x , B), sup
y∈B

d(y, A)
o

, if the maximum exists, otherwise∞
o

.

In all that follows Y is an arbitrary nonempty set and (X , d) a b-metric space unless
otherwise specified.

For the following definition in a metric space, one may refer to Itoh and
Takahashi [7], and Singh and Mishra [28].

Definition 2.3. Let Y be a nonempty set, f : Y → Y and P : Y → 2Y , the collection
of all nonempty subsets of Y . Then the hybrid pair (P, f ) is (IT)-commuting at z ∈ Y
if f Pz ⊆ P f z for each z ∈ Y .

Let (X , d) be a metric space and let f : Y → Y and P,Q : Y → C L(X ) be single-
valued and multivalued maps respectively.

We cite the following lemmas from Czerwik [1,2], and Singh et al. [27].

Lemma 2.1. For any A, B, C ∈ C L(X ),

(i) d(x , B)≤ d(x , y) for any y ∈ B,

(ii) d(A, B)≤ H(A, B),

(iii) d(x , B)≤ H(A, B), x ∈ A

(iv) H(A, C)≤ s[H(A, B) +H(B, C)],

(v) d(x , A)≤ sd(x , y) + sd(y, A), x , y ∈ X .

Lemma 2.2. Let A, B ∈ C L(X ) and k > 1. Then for each a ∈ A, there exists a point
b ∈ B such that d(a, b)≤ kH(A, B).

3. Coincidence Point Theorems

We start with following theorem.

Theorem 3.1. Let (X , d) be a complete b-metric space, let f : Y → Y and
P,Q : Y → C L(X ) be maps such that P(Y )∪Q(Y )⊂ f (Y )

H(P x ,Q y)≤ h[aL(x , y) + (1− a)N(x , y)] (3.1)

for all x , y in X , where 0≤ h, a < 1,

L(x , y) =max
�

d( f x , f y), d( f x , P x), d( f y,Q y),
1

2
[d( f x ,Q y) + d( f y, P x)]

�

(3.2)
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and

N(x , y) =
�

max
�

d2( f x , f y), d( f x , P x) · d( f y,Q y), d( f x ,Q y) · d( f y, P x),

1

2
[d( f x , P x) · d( f y, P x)]

�� 1
2

. (3.3)

If s
p

h< 1, one of P(Y ), Q(Y ) or f (Y ) is a complete subspace of X , then f x ∈ P x∩Qx
has a solution. Indeed, for any x0 ∈ Y , there exists a sequence {xn} in Y such that the
sequence { f xn} converges to f z for some z ∈ Y , and f z ∈ Pz ∩Qz.

Proof. If s = 1 then the conclusion follows from metric space setting, so we need
to take s > 1. Pick x0 ∈ Y . We construct sequences {xn} in Y and { f xn} in X in
the following manner. Since P(Y ) ⊆ f (Y ), we can find a point x1 ∈ Y such that
f x1 ∈ P x0. Noting that Q(Y ) is also a subspace of f (Y ), for a suitable point x2 ∈ Y ,
we can choose a point f x2 ∈Qx1 such that

d( f x1, f x2)≤ kH(P x0,Qx1), where k = h−1/2 .

In general, we can choose a sequence {xn} in Y such that f x2n+1 ∈ P x2n,
f x2n+2 ∈Qx2n+1, f x2n+3 ∈ P x2n+2 and

d( f x2n+1, f x2n+2)≤ kH(P x2n,Qx2n+1),

≤ kh[aL(x2n, x2n+1) + (1− a)N(x2n, x2n+1)] (3.4)

where

L(x2n, x2n+1)≤max
�

d( f x2n, f x2n+1), d( f x2n, f x2n+1), d( f x2n+1, f x2n+2),

1

2
[d( f x2n, f x2n+2) + d( f x2n+1, f x2n+1)]

�

≤max
�

d( f x2n, f x2n+1), d( f x2n+1, f x2n+2),

1

2
s[d( f x2n, f x2n+1) + d( f x2n+1, f x2n+2)]

�
(3.5)

and

N(x2n, x2n+1)

≤ �max
�

d2( f x2n, f x2n+1), d( f x2n, f x2n+1) · d( f x2n+1, f x2n+2), 0, 0
	�1/2. (3.6)

Now by equation (3.4), (3.5) and (3.6), we get

d( f x2n+1, f x2n+2)≤ kh[asd( f x2n, f x2n+1) + (1− a)0].

Suppose that d( f x2n+1, f x2n+2) > khasd( f x2n, f x2n+1) for some n ∈ N . Then
we obtain d( f x2n+1, f x2n+2) < d( f x2n, f x2n+1), which is a contradiction, and so
d( f x2n+1, f x2n+2)≤ as

p
hd( f x2n, f x2n+1).
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Similarly d( f x2n+2, f x2n+3) ≤ as
p

hd( f x2n+1, f x2n+2). Therefore in general
d( f xn+1, f xn+2) ≤ as

p
hd( f xn, f xn+1), for all n ∈ N . Since a < 1, s

p
h< 1 and X

is complete, it follows from (3.4) that { f xn} is a Cauchy sequence. If we assume
that f (Y ) is a complete subspace of X , then the sequence {xn} and its subsequences
{x2n} and {x2n+1} have a limit in f (Y ). Call it u. Then there exists a point z ∈ Y
such that f z = u. By (3.1) and Lemma 2.2, we have

d( f z, f x2n+2)≤ kH(Pz,Qx2n+1)

= kh[aL(z, x2n+1) + (1− a)N(z, x2n+1) (3.7)

where

L(z, x2n+1)≤max
�

d( f z, f x2n+1), d( f z, Pz), d( f x2n+1, f x2n+2),

1

2
[d( f z, f x2n+2) + d( f x2n+1, Pz)]

�

and

N(z, x2n+1)≤
�

max
�

d2( f z, f x2n+1), d( f z, Pz) · d( f x2n+1, f x2n+2),

d( f z, f x2n+2) · d( f x2n+1, Pz),

1

2
[d( f z, Pz) · d( f x2n+1, Pz)]

��1/2

.

Making n→∞, we have

L(z, x2n+1)≤max
�

d( f z, f z), d( f z, Pz), d( f z, f z),
1

2
[d( f z, f z) + 0]

�

≤max{0, d( f z, Pz), 0, 0}

= d( f z, Pz) (3.8)

and

N(z, x2n+1)≤
�

max
�

d2( f z, f z), d( f z, Pz) · d( f z, f z), d( f z, f z) · d( f z, Pz),

1

2
[d( f z, f z) · d( f z, f z)]

��1/2

≤ [max{0, 0, 0, 0, 0}]1/2 (3.9)

respectively. Thus we have from (3.7), (3.8), (3.9)

d( f z, Pz)≤ khad( f z, Pz)

= a
p

hd( f z, Pz) .
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Which implies d( f z, Pz) = 0, because a
p

h ≤ 1 therefore f z ∈ Pz, since Pz is
closed. Similarly f z ∈Qz, Thus f z ∈ Pz ∩Qz. This completes the proof. ¤

Remark 3.1. Take P = Q the identity maps, in Theorem 3.1, we obtain generali-
zations of several coincidence results existing in the literature (see, for instance
[6], [25], [26]).

4. Fixed Point Theorems

We apply coincidence theorem of the previous section to study fixed point
theorem.

Theorem 4.1. Let all the hypotheses of Theorem 3.1 be satisfied with Y = X . If f
is (IT)-commuting with each of P and Q at their common coincidence point z, and if
u= f z is fixed point of f , then f , P and Q have a common fixed point, i.e.,

u= f u ∈ Pu∩Qu .

Proof. It comes from Theorem 3.1 that there exist z, u ∈ X such that u = f z ∈ Pz
and u = f z ∈ Qz. Since u = f u, the (IT)-commutativity of f and P implies that
u = f u = f f z ∈ f Pz ⊆ P f z = Pu. Similarly u = f u ∈ Qu. So u = f u ∈ Pu ∩Qu.
This completes the proof. ¤

Remark 4.1. Let all the hypotheses of Theorem 4.1 be satisfied with Y = X . If f
is (IT)-commuting with each of P =Q at their common coincidence point z, and if
u= f z is fixed point of f , then f , P =Q have a common fixed point, i.e.,

u= f u ∈ Pu .

Remark 4.2. If we take k = h−1/2 in proof Theorem 3.1 at k > 1 then it to be
skh< 1. So k > 1 in Theorems 3.1 and 4.1. Then we can take s

p
h< 1 at skh< 1.

If we change condition N(x , y) with condition N1(x , y) then condition s
p

h < 1
will change with condition sh2/3 < 1 and make some corrections. So we can take
skh< 1 at s

p
h< 1, where k > 1.
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