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Existence of Coincidence and Fixed Point Theorems
for Non-linear Hybrid Map on Generalized Space

Abha Singh

Abstract. In a recent paper Pathak et al. [20] established the coincidence
and fixed point theorems for nonlinear hybrid contraction map under f-weak
compatible continuous maps on metric spaces. In this paper we prove coincidence
and fixed point theorems for nonlinear hybrid contraction maps on generalized
metric spaces for multi-valued and single maps. Proved results of this paper to be a
substantial generalization of the corresponding theorem of the recent paper [20].

1. Introduction

There are many coincidence and fixed point theorems for nonlinear hybrid
contraction maps of a closed and bounded subset CB(X) for a complete metric
space X. However, in many applications, the maps involved may refer to
Hadzic [5], Jungck [8], Kaneko et al. [9-11], Kannan [12], Pathak et al. [17-22],
so it is interest to determine sufficient conditions on nonlinear hybrid maps which
sure the existence of a fixed point. Subsequently, a number of generalizations
of the multi-valued contraction principle for non-linear hybrid contraction maps
obtained may refer to Khan [13], Kubiak [14], Nadler [15], Naimpally et al. [16],
Rhoades et al. [23], Sessa [24], Smithson [29]. In this paper we consider the
hybrid of maps, viz., contractive conditions involving multi-valued and single maps
on a generalized metric space satisfying very general contractive type conditions
which include several general conditions studied by Hematulin and Singh [6],
Pathak et al. [20,21], Singh et al. [26]. The result of this paper is a substantial
generalization of the corresponding Theorem 1.1 of the recent paper of Pathak,
Khan and Cho [20].
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Theorem 1.1. Let (X,d) be a complete metric space, let f : X — X and P : X —
CB(X) be f-weak compatible continuous maps such that P(X) C f(X) and

H(Px,Py)<h[laL;(x,y)+ (1 —a)N;(x,y)] forallx,yinX,

where 0<h<1,0<a<]1,

1
LG, y) = max{d(fx,fy),d(fx,Px),d(fy, Py, Sld(Fx,Py) + d(fy,Px)]}
and

Ny, y) = [max{dz(fx,fy),d(fx,PX)-d(fy,Py),d(fx,Py) d(fy,Px),

0, P) Ay, POL S P,y

Then there exists a point z € X such that fz € Pz, i.e. the point z is a coincidence
point of f and P.

2. Preliminaries
In a sequel, we use the following notations and definitions.

Definition 2.1 (Czerwik [1-4]). Let X be (nonempty) a set and s > 1 a given real
number. A function d : X xX — R* (nonnegative real) is called a b-metric provided
that for all x,y,z € X,

(bm-1) d(x,y)=0,iff x =y,
(bm-2) d(x,y)=d(y,x),
(bm-3) d(x,z) <s[d(x,y)+d(y,z)].

The pair (X, d) is called a b-metric space.

We remark that a metric space is evidently a b-metric space. However, Czerwik
[1,2] has shown that a b-metric on X need not be a metric on X (see also [3,27]).
The following example shows that b-metric on X need not be a metric on X.

The following examples show that b-metric on X need not be a metric on X.
Example 2.1. Let X = {x1,x,,x3} and d : X x X — R* such that
d(xy,x2)=x =3, d(xy,x3)=d(x2,x3) =1, d(xp,x,)=0, d(xp, x;)=d(xp, Xp).
Then
A1) < S[ACr ) + e x], ki =1,2,3

Then (X, d) is a b-metric space.
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Definition 2.2 (Czerwik [2]). Let (X,d) be a b-metric space. The Hausdorff
b-metric H on CL(X), the collection of all nonempty closed subsets of (X,d) is
defined as follows:

H(A,B) := {max { supd(x,B),sup d(y,A)}, if the maximum exists, otherwise oo}.
X€A YE€B

In all that follows Y is an arbitrary nonempty set and (X, d) a b-metric space unless
otherwise specified.

For the following definition in a metric space, one may refer to Itoh and
Takahashi [7], and Singh and Mishra [28].

Definition 2.3. Let Y be a nonempty set, f : Y — Y and P : Y — 27, the collection
of all nonempty subsets of Y. Then the hybrid pair (P, f ) is (IT)-commuting atz € Y
if fPz CPfgzforeachzeY.

Let (X,d) be a metric space and let f : Y — Y and BQ : Y — CL(X) be single-
valued and multivalued maps respectively.

We cite the following lemmas from Czerwik [1,2], and Singh et al. [27].

Lemma 2.1. For any A,B,C € CL(X),

(1) d(x,B) <d(x,y)forany y €B,
(i) d(A,B) < H(A,B),
(iii) d(x,B) <H(A,B), x €A
(iv) H(A,C) <s[H(A,B)+ H(B,C)],
) d(x,A) <sd(x,y)+sd(y,A), x,y €X.

Lemma 2.2. Let A,B € CL(X) and k > 1. Then for each a € A, there exists a point
b € B such that d(a, b) < kH(A, B).

3. Coincidence Point Theorems
We start with following theorem.

Theorem 3.1. Let (X,d) be a complete b-metric space, let f : Y — Y and
PQ:Y — CL(X) be maps such that P(Y)UQ(Y) C f(Y)

H(Px,Qy) <h[aL(x,y)+ (1 —a)N(x,y)] B.1)
forall x,y in X, where 0 <h,a <1,

1
L(x,y) = max {d(fx,fy), A(Fx,P), d(F,QY) 3[4, Q1)+ d(fy,Px)]}
(3.2)
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and

N(x,y) = [maX{dz(fx,fy),d(fx,PX)~d(fy,Qy),d(fx,Qy)-d(fy,PX),

1

%[d(fx,Px) : d(fy,Px)]}] : (3.3)

Ifsvh < 1, one of P(Y), Q(Y) or f(Y) is a complete subspace of X, then f x € PxNQx
has a solution. Indeed, for any x, € Y, there exists a sequence {x,} in Y such that the
sequence {f x,} converges to fz for somez €Y, and fz € Pz NQz.

Proof. If s = 1 then the conclusion follows from metric space setting, so we need
to take s > 1. Pick x, € Y. We construct sequences {x,} in ¥ and {fx,} in X in
the following manner. Since P(Y) € f(Y), we can find a point x; € Y such that
fx;, € Px,. Noting that Q(Y') is also a subspace of f(Y), for a suitable point x, €Y,
we can choose a point f x, € Qx; such that

d(fx1,fx5) <kH(Pxo,Qx;), where k=h"1/2.

In general, we can choose a sequence {x,} in Y such that fx,,,; € Pxy,,
fXont2 € Qi1 f X9n43 € PXgpyp and

d(fx2n+1:fx2n+2) = kH(PXZm Qx2n+1):
< kh[aL(xqn, X9541) + (1 — a)N (x5, Xopt1)] (3.4)

where

L(x2p, Xgp41) < max {d(fXZn’fXZrH—l): d(f Xon, f Xon41), d(f X2ns15 f Xoni2),
1
S o ) + 4 T )|
< max {d(fXmeXZrH—l): d(f Xont1> f Xont2),

1
Es[d(fXZn’fx2n+1) + d(fx2n+1:fx2n+2)]} 3.5)

and

N(X2p5 X2041)

< [max {d2(f xan, f %2041, A0 Xops £ Xon41) * A(F Xonsn, f X2s2),0,01] 2. (3.6)
Now by equation (3.4), (3.5) and (3.6), we get
d(f Xont1, f Xonto) < kh[asd(f X, f X2p41) + (1 — a)O0].

Suppose that d(f x5,11,f Xon40) > khasd(f xq,, f X541) for some n € N. Then
we obtain d(f Xq,41, f Xon42) < d(f Xon, f Xont1), Which is a contradiction, and so
d(f Xons1, f Xon12) < asﬂd(fxzn,fxznﬂ)-
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Similarly d(f Xgni9,fXonss) < asvVhd(fXoni1,fXonsos). Therefore in general
d(f Xpi1,f Xpio) < asvVhA(f X, f Xpi1), foralln € N. Since a < 1, svh < 1 and X
is complete, it follows from (3.4) that {f x,} is a Cauchy sequence. If we assume
that f (Y is a complete subspace of X, then the sequence {x,} and its subsequences
{x9,} and {x,,,1} have a limit in f(Y). Call it u. Then there exists a pointz € Y
such that fz = u. By (3.1) and Lemma 2.2, we have

d(fz, fxXoni2) < kH(P2,QxX5n41)

= kh[aL(z,x9,41) + (1 —a)N(z,Xx5,41) 3.7)
where
L(Z, erH—l) S maX{d(fz,fx2n+1),d(fZ,PZ),d(fX2n+1,fx2n+2),
1
AU x3012) + 4 0, P2 |
and

N(z,Xx9p41) < [max{dz(fz,fx2n+1),d(fz,Pz) d(f Xoni1> f Xong2)s

d(fz, fXont2) - d(f X3441, P2),

1 1/2
HUGROR S
Making n — oo, we have
L(z, Xp41) < max {d( fz,f2),d(fz,Pz2),d(fz,f2), %[d( fz,fz)+0] }
< max{0,d(fz, Pz),0,0}

=d(fz,Pz) (3.8)

and

N(Z,X2n+1) < [max{dz(fz,fz),d(fz,Pz) : d(fz,fz),d(fz,fz) . d(fZ,PZ),

1 1/2
HCGNORENOI

< [max{0,0,0,0,0}]"/? (3.9)
respectively. Thus we have from (3.7), (3.8), (3.9)
d(fz,Pz) < khad(fz,Pz)

= aﬁd(fz,Pz).
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Which implies d(fz,Pz) = 0, because avh < 1 therefore fz € Pz, since Pz is
closed. Similarly fz € Qz, Thus fz € Pz N Qz. This completes the proof. O

Remark 3.1. Take P = Q the identity maps, in Theorem 3.1, we obtain generali-
zations of several coincidence results existing in the literature (see, for instance
(6], [25], [26]).

4. Fixed Point Theorems

We apply coincidence theorem of the previous section to study fixed point
theorem.

Theorem 4.1. Let all the hypotheses of Theorem 3.1 be satisfied with Y = X. If f
is (IT)-commuting with each of P and Q at their common coincidence point z, and if
u = fzis fixed point of f, then f, P and Q have a common fixed point, i.e.,

u=fuePunqQu.

Proof. It comes from Theorem 3.1 that there exist z,u € X such thatu = fz € Pz
and u = fz € Qz. Since u = fu, the (IT)-commutativity of f and P implies that
u=fu=ffze fPz C Pfz = Pu. Similarly u = fu € Qu. Sou = fu € PunQu.
This completes the proof. O

Remark 4.1. Let all the hypotheses of Theorem 4.1 be satisfied with Y = X. If f
is (IT)-commuting with each of P = Q at their common coincidence point z, and if
u = fz is fixed point of f, then f, P = Q have a common fixed point, i.e.,

u=fu€Pu.

Remark 4.2. If we take k = h™'/2 in proof Theorem 3.1 at k > 1 then it to be
skh < 1. So k > 1 in Theorems 3.1 and 4.1. Then we can take svh < 1 at skh < 1.
If we change condition N(x,y) with condition N;(x,y) then condition svh < 1
will change with condition sh*® < 1 and make some corrections. So we can take
skh <1 atsvh < 1, where k > 1.
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