New \(Q\)-\(\beta\)-Decay Theory Applied to the Calculations of the Rest Mass Energy \(m_0c^2\) of the Electron and of the \(Q\)-Value for \(\beta^+\)-Decay Transitions in Mirrors Nuclei \(A = 2Z - 1\)

Authors

  • I. Sakho Department of Physics Chemistry, UFR Sciences and Technologies, Iba Der Thiam University, Thies, Senegal; African Center for Applied Atomic and Nuclear Technologies, Jaxaay, PA, U25, Dakar, Senegal https://orcid.org/0000-0003-2983-1396

DOI:

https://doi.org/10.26713/jamcnp.v12i1.3173

Keywords:

\(Q\)-\(\beta\)-decay theory, Liquid drop model, \(Q\)-value, \(\beta^{ }\)-decay, Nuclear charge distribution coefficient, Electron rest mass energy

Abstract

A new nuclear approach named \(Q\)-\(\beta\)-decay theory \((Q\beta T)\) is presented. This method is applied to express theoretically the \(\beta^+\)-\(Q\)-value for mirrors nuclei \(A = 2Z-1\). An important parameter named nuclear charge distribution coefficient (NCDC) noted \(\alpha (Z)\) is presented. In the framework of the liquid drop nuclear model where the nuclear charge is uniformly distributed in the nuclear volume, \(\alpha (Z) = 3/5\). It this work, it is demonstrated that the protons are not rigorously uniformly distributed within the nucleus. A slight correction is obtained with \(\alpha (Z) \approx \alpha_0 = 3/5 + 0.0557\). For \({}^{37}\)K and \({}^{65}\)As, we find for the electron rest mass energy \(m_0c^2=0.510\) 996 MeV agreeing excellently with the recommended value 0.510 998 950 MeV (CODATA, 2022). In addition, the \(Q\)-value calculated for \(A\) ranging between 11 and 99 agree very well with the recent Atomic Mass Evaluation -- AME2020 (Wang et al. [15]). New accurate $Q$-values are tabulated for nuclei mirrors with \(A\) ranging between 101 and 199. The present \(Q\)-\(\beta\)-DT make it possible to understand many nuclear properties and phenomena depending on the \(Q\)-value such as comparison between experimental and theoretical predictions of atomic masses, the understanding of the weak force and of the competitive processes between electron capture and \(\beta^+\)-decay.

Downloads

Download data is not yet available.

References

K. Blaum, High-accuracy mass spectrometry with stored ions, Physics Reports 425(1) (2006), 1 – 78, DOI: 10.1016/j.physrep.2005.10.011.

K. Blaum, J. Dilling and W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams, Physica Scripta 2013(T152) (2013), 014017, DOI: 10.1088/0031-8949/2013/T152/014017.

l. S. Brown, G. Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap, Reviews of Modern Physics 58 (1986), 233, DOI: 10.1103/RevModPhys.58.233.

R. D. Evans, Le noyau atomique, Dunod, Paris (1961), URL: https://www.abebooks.fr/noyauatomique-Evans-R.D-Dunod/31146898438/bd.

P. Filianin, C. Lyu, M. Door, K. Blaum, W. J. Huang, M. Haverkort, P. Indelicato, C. H. Keitel, K. Kromer, D. Lange, Y. N. Novikov, A. Rischka, R. X. Schüssler, Ch. Schweiger, S. Sturm, S. Ulmer, Z. Harman and S. Eliseev, Direct Q-value determination of the β− decay of 187Re, Physical Review Letters 127 (2021), 072502, DOI: 10.1103/PhysRevLett.127.072502.

Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, J. Kameda, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, M. Nakahata, S. Nakayama, A. Okada, K. Okumura, N. Sakurai, M. Shiozawa, Y. Suzuki, Y. Takeuchi, Y. Totsuka, S. Yamada, M. Earl, A. Habig, E. Kearns, M. D. Messier, K. Scholberg, J. L. Stone, L. R. Sulak, C. W. Walter, M. Goldhaber, T. Barszczxak, D. Casper, W. Gajewski, P. G. Halverson, J. Hsu, W. R. Kropp, L. R. Price, F. Reines, M. Smy, H. W. Sobel, M. R. Vagins, K. S. Ganezer, W. E. Keig, R. W. Ellsworth, S. Tasaka, J. W. Flanagan, A. Kibayashi, J. G. Learned, S. Matsuno, V. J. Stenger, D. Takemori, T. Ishii, J. Kanzaki, T. Kobayashi, S. Mine, K. Nakamura, K. Nishikawa, Y. Oyama, A. Sakai, M. Sakuda, O. Sasaki, S. Echigo, M. Kohama, A. T. Suzuki, T. J. Haines, E. Blaufuss, B. K. Kim, R. Sanford, R. Svoboda, M. L. Chen, Z. Conner, J. A. Goodman, G. W. Sullivan, J. Hill, C. K. Jung, K. Martens, C. Mauger, C. McGrew, E. Sharkey, B. Viren, C. Yanagisawa, W. Doki, K. Miyano, H. Okazawa, C. Saji, M. Takahata, Y. Nagashima, M. Takita, T. Yamaguchi, M. Yoshida, S. B. Kim, M. Etoh, K. Fujita, A. Hasegawa, T. Hasegawa, S. Hatakeyama, T. Iwamoto, M. Koga, T. Maruyama, H. Ogawa, J. Shirai, A. Suzuki, F. Tsushima, M. Koshiba, M. Nemoto, K. Nishijima, T. Futagami, Y. Hayato, Y. Kanaya, K. Kaneyuki, Y. Watanabe, D. Kielczewska, R. A. Doyle, J. S. George, A. L. Stachyra, L. L. Wai, R. J. Wilkes and K. K. Young (Super-Kamiokande Collaboration), Evidence for oscillation of atmospheric neutrinos, Physical Review Letters 81 (1998), 1562, DOI: 10.1103/PhysRevLett.81.1562.

P. Ganesan, P. K. Joshi and R. Palit, Measurement of electron mass using compton scattering, Technical Report, (2015), DOI: 10.13140/RG.2.1.2781.9280.

S. B. Hosur and N. M. Badiger, Determination of rest mass energy of the electron – an undergraduate laboratory experiment, European Journal of Physics 28 (2007), 1233, DOI: 10.1088/0143-0807/28/6/020.

R. N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Physical Review Letters 5(44) (1980), 912, DOI: 10.1103/PhysRevLett.44.912.

S. Pascoli and J. Turner, Matter-antimatter symmetry violated, Nature 580 (2020), 323 – 324, DOI: 10.1038/d41586-020-01000-9.

M. Redshaw, Precise Q value determinations for forbidden and low energy β-decays using Penning trap mass spectrometry, The European Physical Journal A 59 (2023), article number 18, DOI: 10.1140/epja/s10050-023-00925-9.

E. Roeckl and I. Mukha, Q values of radioactive decay: Examples from nuclear physics and related fields, International Journal of Mass Spectrometry 349-350 (2013), 47 – 56, DOI: 10.1016/j.ijms.2013.03.021.

I. Sakho, Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions, ISTE Ltd (London) and John Wiley & Sons, Inc., (USA) (2021), DOI: 10.1002/9781119881483.

I. Sakho, Electrodynamics calculations of the unit nuclear radius in agreement with the constant density model, AASCIT Journal of Physics 4 (2018), 26 – 44, URL: http://www.aascit.org/journal/archive2?journalId=977&paperId=6124.

I. Sakho, New method of estimation of the speed of light in vacuum using Q-values of BetaDécay-Transitions in mirrors nuclei, Schrödinger: Journal of Physics Education 6(1) (2025), 1 – 8, DOI: 10.37251/sjpe.v6i1.1220.

M. Wang, W. J. Huang, F. G. Kondev, G. Audi and S. Naimi, The AME 2020 atomic mass evaluation (II). Tables, graphs and references, Chinese Physics C 45 (2021), 030003, DOI: 10.1088/1674-1137/abdda.

Downloads

Published

2025-10-26
CITATION

How to Cite

Sakho, I. (2025). New \(Q\)-\(\beta\)-Decay Theory Applied to the Calculations of the Rest Mass Energy \(m_0c^2\) of the Electron and of the \(Q\)-Value for \(\beta^+\)-Decay Transitions in Mirrors Nuclei \(A = 2Z - 1\). Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 12(1), 27–43. https://doi.org/10.26713/jamcnp.v12i1.3173

Issue

Section

Research Article