Arithmetic Subderivatives Relative to Subsets of Primes

Authors

  • Champak Talukdar Department of Mathematics, Behali Degree College, Bargang, Sukan Suti 784167, Assam, India https://orcid.org/0009-0009-0571-4831
  • Helen K. Saikia Department of Mathematics, Gauhati University, Gauhati 781014, Assam, India

DOI:

https://doi.org/10.26713/cma.v16i2.3430

Keywords:

Arithmetic subderivative, Multiplicative functions, Bijections, Prime powers

Abstract

The arithmetic derivative is a number-theoretic function that behaves analogously to differentiation defined on integers. In this paper, we extend the concept to generalized arithmetic subderivatives with respect to a chosen set of primes. Inspired by the work of P. Haukkanen (Generalized arithmetic subderivative, Notes on Number Theory and Discrete Mathematics 25(2) (2019), 1 – 7), we introduce a family of arithmetic functions that generalize the prime-power exponents in the classical definition. We establish necessary and sufficient conditions under which these generalized subderivatives satisfy analogs of linearity, the Leibniz rule (product rule), and multiplicativity. Several illustrative examples are worked out to demonstrate the computations and properties of these subderivatives.

Downloads

Download data is not yet available.

References

E. J. Barbeau, Remarks on an arithmetic derivative, Canadian Mathematical Bulletin 4(2) (1961), 117 – 122, DOI: 10.4153/CMB-1961-013-0.

B. Emmons and X. Xiao, A generalization of arithmetic derivative to p-adic fields and number fields, Notes on Number Theory and Discrete Mathematics 30(2) (2024), 357 – 382, DOI: 10.7546/nntdm.2024.30.2.357-382.

P. Haukkanen, Generalized arithmetic subderivative, Notes on Number Theory and Discrete Mathematics 25(2) (2019), 1 – 7, DOI: 10.7546/nntdm.2019.25.2.1-7.

P. Haukkanen, J. K. Merikoski and T. Tossavainen, On arithmetic partial differential equations, Journal of Integer Sequences 19 (2016), Article 16.8.6, URL: https://cs.uwaterloo.ca/journals/JIS/VOL19/Tossavainen/tossa6.html.

P. Haukkanen, J. K. Merikoski and T. Tossavainen, The arithmetic derivative and Leibnizadditive functions, Notes on Number Theory and Discrete Mathematics 24(3) (2018), 68 – 76, DOI: 10.7546/nntdm.2018.24.3.68-76.

P. Haukkanen, J. K. Merikoski and T. Tossavainen, Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative, Mathematical Communications 25(1) (2020), 107 – 115, URL: https://hrcak.srce.hr/235544.

J. Kovic, The arithmetic derivative and antiderivative, ˇ Journal of Integer Sequences 15 (2012), Article 12.3.8, URL: https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html.

P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, vii + 365 pages (1986), DOI: 10.1007/978-1-4613-8620-9.

J. K. Merikoski, P. Haukkanen and T. Tossavainen, Arithmetic subderivatives and Leibniz-additive functions, Annales Mathematicae et Informaticae 50 (2019), 145 – 157, DOI: 10.33039/ami.2019.03.003.

R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, Routledge, New York, 406 pages (1989), DOI: 10.1201/9781315139463.

T. Tossavainen, P. Haukkanen, J. K. Merikoski and M. Mattila, We can differentiate numbers, too, The College Mathematics Journal 55(2) (2024), 100 – 108, DOI: 10.1080/07468342.2023.2268494.

V. Ufnarovski and B. Åhlander, How to differentiate a number, Journal of Integer Sequences 6 (2003), Article 03.3.4, URL: https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.pdf.

Downloads

Published

20-08-2025
CITATION

How to Cite

Talukdar, C., & Saikia, H. K. (2025). Arithmetic Subderivatives Relative to Subsets of Primes. Communications in Mathematics and Applications, 16(2), 489–497. https://doi.org/10.26713/cma.v16i2.3430

Issue

Section

Research Article