On the Spectrum of Generalized Zero-Divisor Graph of the Ring \(\mathbb{Z}_{p^\alpha q^\beta}\)

Authors

DOI:

https://doi.org/10.26713/cma.v15i3.2737

Keywords:

Zero-divisor graph, Adjacency matrix, Eigenvalues

Abstract

The generalized zero-divisor graph of a commutative ring \(R\), denoted by \(\Gamma'(R)\), is a simple (undirected) graph with vertex set \(Z^*(R)\), the set of all nonzero zero-divisors of \(R\) and two distinct vertices \(x\) and \(y\) are adjacent if \(x^ny=0\) or \(y^nx=0\), for some positive integer \(n\). In this paper, we determine the adjacency spectrum of \(\Gamma'(\mathbb{Z}_{p^{\alpha}q^{\beta}})\), where \(p,q\) are distinct primes and \(\alpha, \beta\) are positive integers. Also, we obtain the clique number, stability number, diameter, and the girth of \(\Gamma'(\mathbb{Z}_{p^{\alpha}q^{\beta}})\).

Downloads

Download data is not yet available.

References

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217(2) (1999), 434 – 447, DOI: 10.1006/jabr.1998.7840.

D. F. Anderson, T. Asir, A. Badawi and T. T. Chelvam, Graphs from Rings, 1st edition, Springer, Cham., xvi + 538 pages (2021), DOI: 10.1007/978-3-030-88410-9.

M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, 1st edition, CRC Press, Boca Raton, 140 pages (1969), DOI: 10.1201/9780429493638.

L. Beaugris, M. Flores, C. Galing, A. Velasquez and E. Tejada, Weak zero-divisor graphs of finite commutative rings, Communications in Mathematics and Applications 15(1) (2024), 1 – 8, DOI: 10.26713/cma.v15i1.2498.

I. Beck, Coloring of commutative rings, Journal of Algebra 116(1) (1988), 208 – 226, DOI: 10.1016/0021-8693(88)90202-5.

D. M. Cardoso, M. A. de Freitas, E. A. Martins and M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Mathematics 313(5) (2013), 733 – 741, DOI: 10.1016/j.disc.2012.10.016.

C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, NY, xix + 443 pages (2001), DOI: 10.1007/978-1-4613-0163-9.

A. Khairnar and B. N. Waphare, Zero-divisor graphs of laurent polynomials and laurent power series, in: Algebra and its Applications, S. Rizvi, A. Ali and V. Filippis (editors), Springer Proceedings in Mathematics & Statistics, Vol. 174, Springer, Singapore, DOI: 10.1007/978-981-10-1651-6_21.

N. Kumbhar, A. Khairnar and B. N. Waphare, Strong zero-divisor graph of rings with involution, Asian-European Journal of Mathematics 16(10) (2023), 2350179, DOI: 10.1142/s1793557123501796.

A. Lande and A. Khairnar, Generalized zero-divisor graph of ∗-rings, arXiv:2403.10161v1 [math.CO], (2024), DOI: 10.48550/arXiv.2403.10161.

P. M. Magi, Sr. M. Jose and A. Kishore, Adjacency matrix and eigenvalues of the zero-divisor graph Γ(Zn), Journal of Mathematical and Computational Science 10(4) (2020), 1285 – 1297, DOI: 10.28919/jmcs/4590.

A. Patil and B. N. Waphare, The zero-divisor graph of a ring with involution, Journal of Algebra and Its Applications 17(03) (2018), 1850050, DOI: 10.1142/S0219498818500500.

S. Pirzada, B. Rather, R. Shaban and T. Chishti, Signless Laplacian eigenvalues of the zero divisor graph associated to finite commutative ring ZpM1 qM2 , Communications in Combinatorics and Optimization 8(3) (2023), 561 – 574, DOI: 10.22049/cco.2022.27783.1353.

S. Pirzada, B. A. Wani and A. Somasundaram, On the eigenvalues of zero-divisor graph associated to finite commutative ring Zpmqn , AKCE International Journal of Graphs and Combinatorics 18(1) (2021), 1 – 6, DOI: 10.1080/09728600.2021.1873060.

S. P. Redmond, The zero-divisor graph of a non-commutative ring, International Journal of Commutative Rings 1(4) (2002), 203 – 211.

M. Young, Adjacency matrices of zero-divisor graphs of integers modulo n, Involve 8(5) (2015), 753 – 761, DOI: 10.2140/involve.2015.8.753.

Downloads

Published

30-11-2024
CITATION

How to Cite

Lande, A., & Khairnar, A. (2024). On the Spectrum of Generalized Zero-Divisor Graph of the Ring \(\mathbb{Z}_{p^\alpha q^\beta}\). Communications in Mathematics and Applications, 15(3), 1031–1044. https://doi.org/10.26713/cma.v15i3.2737

Issue

Section

Research Article