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Abstract. Typhoid infection dynamics is proposed in this work. The homotopy analysis method is
used to solve the relevant equations, producing the approximate analytical solutions for the four
compartments, such as Susceptible (S), Exposed (E), Infected (I) and Recovered (R). The numerical
simulation is utilised using a MATLAB programme. In addition, the problem’s numerical simulation is
provided. A comparison between the numerical simulation and the analytical solution reveals excellent
agreement. A number of other parameters are also discussed and graphically represented, such as the
rate of innate dying ψ, the rate of human recruitment (birth) ϕ, the rate of disease interaction α, the
rate of unprotected symptoms τ, the rate of infectious recovery θ, the rate at which humans who have
recovered lose temporary immunity σ,and the total number of people who die from illness δin the
compartment of Susceptible (S), Exposed (E), Infected (I) and Recovered (R). The homotopy analysis
technique is employed to solve SVEIR, SEIR, SIR, and SVEIHR.
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1. Introduction
Salmonella enterica serotype Typhi, commonly known as Salmonella typhi, is the pathogen
responsible for typhoid fever, or simply typhoid. The symptoms can range in severity from
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mild to severe and often manifest six to thirty days following exposure. A rash with patches,
the colour of roses appears on certain persons. Typhoid fever, commonly known as enteric
fever, is brought on by the Salmonella bacteria. Wherever there is a low prevalence of the
bacteria, typhoid fever is uncommon. Furthermore, the complete eradication of microorganisms
is unusual in places where human waste disposal was regulated and water is treated (Ivanoff et
al. [12]). In the United States, where typhoid disease is rare. The two regions with the highest
incidence of cases or recurrent outbreaks are South Asia and Africa. It is extremely dangerous
to the public’s health in regions in which it is more widespread, especially for young people
(Butler [6]).

The bacteria that cause typhoid fever are present in food and beverages. Additionally,
intimate contact with a person who contains the salmonella bacteria might result in typhoid
fever. One of the signs is a high fever, headache, constipation, diarrhoea, or abdominal pain
(Nsutebu et al. [21]). Once antibiotic therapy is started, most people with typhoid fever recover
within a week because the medication kills the bacterium. However, the risk of dying from
complications related to typhoid fever is quite low in the absence of therapy (Schemmer [26]).
Immunisations against typhoid disease may offer some defence (Bhan et al. [4]). However, they
are unable to provide total defence against diseases caused by various strains of salmonella.
Immunisations may lower the risk of typhoid illness.

To examine the typhoid disease model’s worldwide stability, Mushayabasa et al. [19]
compute the fundamental reproduction number. The impact of successful treatment and the
probability of a newly infected individual being a carrier were also explored by numerical
simulations. Rafiq et al. [24] using the notion of Lyapunov functions, global stabilisations
has been conducted for the ebola epidemic model at both levels. They use both the Runge–
Kutta technique of order 4 (RK4) and a non-standard finite difference (NSFD) scheme for the
susceptible–exposed–infected–recovered (SEIR) model. Using above two method, Ahmad et
al. [2] confirm theoretical conclusions with numerical simulations. Also, he concluded that the
Ebola virus can be eradicated if people choose to voluntarily be vaccinated and if focused public
education campaigns were launched at different coverage levels.

Ahmad et al. [3] proven the global stability of both equilibria by applying LaSalle’s invariance
assumption from the Lyapunov function theory. The (NSFD) and (RK4) method are two well-
known numerical approaches that were used to solve the system of ODEs. These methods also
serve to validate their theoretical results. Nazir et al. [20] using Khalil’s conformable transform,
memory effects were found for each example (States that are endemic and free of sickness)
and designed to improve the accuracy of future forecasts. As you can see from the figures, the
problem remained a constant in both the endemic and disease-free regimes.

In the sensitivity study of Tilahun et al. [27] for both endemic and disease-free equilibria,
asymptotic stability criteria were found both locally and globally. A forward trans critical
split that results from the model was viewed. An optimal control problem with three control
techniques has been developed using the Pontryagin maximal concept: vaccination, good hygiene,
and sanitation as a preventive measure. The stability study of the model was conducted in order
to identify the parameters that promote the disease’s spread within a particular community.
In addition, an increase in protection results in a lower prevalence of disease in a community,
according to numerical simulation of the model has been carried out by Nthiiri et al. [22].

Adeboye and Haruna [1] developed and studied a mathematical framework of co-infection
between typhoid and malaria that addresses the management of both diseases’ simultaneous
spread. The goal of Brauer and Castillo-Chávez [5] was to encourage biological science students
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to approach science with a mathematical perspective. Chamuchi et al. [7] looked on the
effectiveness of control measures to reduce the number of carriers of the typhoid virus in
Kisii town. NSFD scheme is developed by Cui et al. [8] for a SIR epidemic model of paediatric
disease that employs a constant technique. Using a NSFD method, the continuous SIR epidemic
model is numerically discretised. The denominator function is selected so that the scheme
upholds the population conservation law (Darti et al. [9]). Study was done on the dynamic
behaviour of two discrete epidemiological models for diseases with nonlinear incidence rates
(Hattaf et al. [11]). Euler methods are applied both forward and backward to derive both discrete
models from the continuous case. The stability behaviour of the endemic equilibrium and the
disease-free equilibrium were examined in relation to the two distinct discretization’s.

Using the SVEIR epidemic model, Jia and Li [13] demonstrated the globally asymptotical
stability of the disease-free equilibrium. The non-linear incidence rate was shown by the
Liapunov-Lasalle invariant theorem. The endemic equilibrium’s local asymptotic stability was
established using the Hurwitz criterion. The analysis of the local stability of the disease-free
equilibrium point took into account the Jacobian matrix, and the Brauer and Castillo-Chávez
method was employed to ascertain the global stability of the disease-free equilibrium point
(Karunditu et al. [14]). The global stability of the endemic equilibrium point was examined
using the Lyapunov function. The typhoid fever epidemic’s propagation patterns were examined
by Musa et al. [18]. The model assesses the impact of public health education programs
on the pathophysiology of typhoid fever, which can cause serious outbreaks, particularly in
underdeveloped areas. In their evaluation of many school-based immunisation programs, Pitzer
et al. [23] discovered that while vaccination by itself is unlikely to result in eradication, it
is anticipated that vaccination will provide temporary indirect protection and lower typhoid
incidence. sFor the biological models, NSFD are suggested. The presence of related discrete
dynamical systems’ equilibria was investigated by Rao. It was shown that equilibrium solutions
will remain stable under sufficient parameter conditions.

Utilising HAM to approximate the analytical solution for the epidemiology of typhoid fever
is the main objective of this study. We next compare and graphically illustrate the approximate
analytical outcome and numerical simulation. To demonstrate the influence of several variables,
such as therate of innate death ψ, the rate of human recruitment (birth) ϕ, the rate of disease
interaction α, the rate of untreated symptoms τ, the rate of infectious recovery θ, the rate at
which individuals who have recovered from an illness lose their temporary immunity σ, and
the overall number of illness-related deaths δ, graphical illustrations are depicted.

2. Mathematical Formulation of the Problem
Let’s examine the transmission dynamics of Typhoid disease model as presented by
Khan et al. [15]. Presumably, there are four compartments within the total population
N(t): susceptible(S), exposed (E), infected (I), and recovered (R), i.e., N(t) = S(t)+ E(t)+
I(t)+R(t). The following process is used by the model as follows: S → E → I → R. Using the
SEIR model, Figure 1 illustrates a fractional map of the typhoid disease transmission between
exposed individual compartments:

dS
dt

=ϕ+σR−αSI −ψS, (1)

dE
dt

=αSI −τE−ψE, (2)
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dI
dt

= τE−τI −δI −ψI, (3)

dR
dt

= θI −σR−ψR, (4)

with initial condition

At t = 0, S(0)= c1 > 0, E(0)= c2 > 0, I(0)= c3 > 0, R(0)= c4 > 0. (5)

Figure 1. Diagrammatic representation of the epidemic model (Source: [15])

3. Approximate Analytical Solution of the Equations (1)-(5) by Utilising
the Homotopy Analysis Technique

HAM is a non-perturbative analytical technique that has been successfully used to a broad
range of scientific and engineering applications. It works by finding series solutions to non-
linear differential equations. The convergence of a solution can be circumvented and modified
by using the so-called convergence-control parameter, which is provided by HAM. As a result,
HAM has demonstrated to be the most effective method for producing analytical solutions to
non-linear differential equations. The majority of non-linear differential equations that HAM
has been used to solve the unknown function and its derivatives to express the non-linearity
as a polynomial. Liao introduced the homotopy analysis approach, a powerful analytical tool
for non-linear problems (Liao [16,17]). Regarding an endless power series, this approach offers
an analytical solution. But evaluating this answer and deriving numerical numbers from the
infinite power series are practically necessary. A finite number of terms in the Homotopy
Analysis Approach (HAM) solution of the differential equations system were computed in order
to verify its accuracy. Using the auxiliary parameter h, which is a component of the Homotopy
analysis method, is a simple way to adjust and control the convergence zone of solution series.
In comparison to other approaches, the HAM method is incredibly straightforward and shows
great promise for solving additional non-linear equations. It is simple to expand this approach
to solve all other non-linear equations.

Equations (1)-(5) can have their approximate analytical solutions using HAM

(1− p)
[

dS
dt

+ψS
]
= hp

[
dS
dt

−ϕ−σR+αSI +ψS
]

, (6)
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(1− p)
[

dE
dt

+ (τ+ψ)E
]
= hp

[
dE
dt

−αSI +τE+ψE
]

, (7)

(1− p)
[

dI
dt

+ (θ+δ+ψ)I
]
= hp

[
dI
dt

−τE+θI +δI +ψI
]

, (8)

(1− p)
[

dR
dt

+ (σ+ψ)R
]
= hp

[
dR
dt

−θI + (σ+ψ)R
]

. (9)

The approximate analytical solution to equations (6)-(9) is as follows:

S = S0 + pS1 + p2S2 + . . . , (10)

E = E0 + pE1 + p2E2 + . . . , (11)

I = I0 + pI1 + p2I2 + . . . , (12)

R = R0 + pR1 + p2R2 + . . . , . (13)

For equations (6) to (9), the initial approximations are given by

S0(0)= c1, E0(0)= c2, I0(0)= c3, R0(0)= c4, (14)

Si(0)= 0, E i(0)= 0, I i(0)= 0, Ri(0)= 0 . (15)

We have to put equations (10)-(13) into equations (6)-(9) and compare the coefficients of the
powers of p0 and p1 so as to arrive at the following equations.

Zeroth iterations:

p0 :
dS0

dt
+ψS0 = 0, (16)

p0 :
dE0

dt
+ (τ+ψ)E0 = 0, (17)

p0 :
dI0

dt
+ (θ+δ+ψ)I0 = 0, (18)

p0 :
dR0

dt
+ (σ+ψ)R0 = 0 . (19)

Initial iterations:

p1 :
dS1

dt
+ψS1 − dS0

dt
−ψS0 −

(
h

dS0

dt
−hϕ−hσR0 +hαS0I0 +hψS0

)
= 0, (20)

p1 :
dE1

dt
+ (τ+ψ)E1 − dE0

dt
− (τ+ψ)E0 −

(
h

dE0

dt
−hαS0I0 +hτE0 +hψE0

)
= 0, (21)

p1 :
dI1

dt
+ (θ+δ+ψ)I1 − dI0

dt
− (θ+δ+ψ)I0 −

(
h

dI0

dt
−hτE0 +h(θ+δ+ψ)I0

)
= 0, (22)

p1 :
dR1

dt
+ (σ+ψ)R1 − dR0

dt
− (σ+ψ)R0 −

(
h

dR0

dt
−hθI0 +h(σ+ψ)R0

)
= 0. (23)

We can obtain the following results by solving equations (16) to (19) using the constraints in
equations (14):

S0 = c1e−ψt , (24)

E0 = c2e−(τ+ψ)t , (25)

I0 = c3e−(θ+δ+ψ)t , (26)

R0 = c4e−(σ+ψ)t , (27)
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S1 = hϕ
ψ

e−ψt −hc4e−ψt − hαc1c3

θ+δ−ψ e−ψt − hϕ
ψ

+hc4e−(σ+ψ)t + hαc1c3e−(2ψ+θ+δ)t

θ+δ−ψ , (28)

E1 = hαc1c3

τ−ψ−θ−δ e−(τ+ψ)t − hαc1c3e−(2ψ+θ+δ)t

τ−ψ−θ−δ , (29)

I1 = hτc2e−(θ+δ−ψ)t

θ+δ−τ − hτc2e−(τ+ψ)t

θ+δ−τ , (30)

R1 = hθc3e−(σ+ψ)t

σ−θ−δ − hθc3e−(θ+δ+ψ)t

σ−θ−δ . (31)

According to HAM technique, we have

S = lim
p→1

S(t)= S0 +S1 , (32)

E = lim
p→1

E(t)= E0 +E1 , (33)

I = lim
p→1

I(t)= I0 + I1 , (34)

R = lim
p→1

R(t)= R0 +R1 . (35)

As a result, by substitute the equations (24) to (31) into the equations (32) to (35), we have the
following approximate analytical solutions:

S(t)= c1e−ψt + hϕ
ψ

e−ψt −hc4e−ψt − hαc1c3

θ+δ−ψ e−ψt − hϕ
ψ

+hc4e−(σ+ψ)t + hαc1c3e−(2ψ+θ+δ)t

θ+δ−ψ , (36)

E(t)= c2e−(τ+ψ)t + hαc1c3

τ−ψ−θ−δ e−(τ+ψ)t − hαc1c3e−(2ψ+θ+δ)t

τ−ψ−θ−δ , (37)

I(t)= c3e−(θ+δ+ψ)t + hτc2e−(θ+δ−ψ)t

θ+δ−τ − hτc2e−(τ+ψ)t

θ+δ−τ , (38)

R(t)= c4e−(σ+ψ)t + hθc3e−(σ+ψ)t

σ−θ−δ − hθc3e−(θ+δ+ψ)t

σ−θ−δ . (39)

4. Numerical Simulation
The effectiveness of our approximate-analytical solution is demonstrated by numerical
simulation of non-linear differential equations. In MATLAB function graphmain3, is utilised for
equations (1) to (5). We found that the numerical simulation and our approximate-analytical
solution were agreed well from Figures 1-6.

5. Results and Discussion
In this section, we have discussed the graphical illustration based on the derived approximate
analytical results specified in equations (36) to (39). Figure 2 to 6(d) compares the approximate
analytical results with numerical simulation using MATLAB. As compared to numerical
simulation, our approximate analytical findings reach a very good fit.

Figure 2 illustrates the total population against time for the considered epidemic model.
This figure shows the Susceptible, Exposed, Infected as well as Recovered class of population
against time for some fixed parameters involved in the model. From this figure, our approximate
analytical results coincide with numerical simulation with an acceptable range.
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Figure 2. Total population against time for the epidemic model

For Susceptible class. The Susceptible class S(t) is plotted against time (t) (weeks) in
Figures 3(a)-3(f) using equations (36). As shown in Figures 3(a), 3(c), and 3(f), the values of
the rates of disease interaction α, the human recruitment (birth) ϕ, and the rate of transient
immunity loss (lost immunity) in humans who have recovered σ are all rise, the corresponding
susceptible class S(t) also increases. Figures 3(b), 3(d), and 3(e) shows that, as the amount of
the rates of infectious recovery θ, innate dying ψ and the number of illness-related deaths δ
rise, the associated Susceptible class S(t) falls.

(a) The Impact of the pace of human recruiting
(birth) ϕ in Susceptible S(t)

(b) The influence of the rate of innate dying ψ in
Susceptible S(t)

(c) The impacts of the disease interaction rate α in
susceptible S(t)

(d) Variation in the number of deaths due to
sickness δ in Susceptible S(t)

Figure continued.
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(e) Influence of the rate of infectious recovery θ in
Susceptible S(t)

(f) Effects of the pace at which persons who have
recovered lose their temporary immunity σin
Susceptible S(t)

Figure 3

For Exposed class. Using equations (37), Figures 4(a)-4(e) display the exposed class E(t)
versus time (t) (weeks). According to Figure 4(a), when the rate of disease interaction increases,
so does the corresponding Exposed class E(t). The rates of unprotected symptoms τ, innate
dying ψ, infectious recovery θ, and the number of illness-related deaths δ all show rising values;
the matched Exposed class E(t) experiences falling rates. These findings are illustrated in
Figures 4(b)-4(e).

(a) The influence of the disease interaction rate α
in Exposed E(t)

(b) The influence of the rate of innate dying ψ in
Susceptible S(t)

(c) Effects of the rate of innate dying ψ in Exposed
E(t)

(d) Influence of the rate of infectious recovery θ in
Exposed E(t)

Figure continued.
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(e) The impact of the number of deaths due to
sickness δ in Exposed E(t)

Figure 4

For Infected class. Using equations (38), Figures 5(a)-5(d) plots the infected class I(t) against
time (t) (weeks). In Figures 5(a)-5(c) depicts that when the rate of infectious recovery θ, the
number of individuals who pass away from illness δ and the rate of innate dying ψ all rise, the
corresponding infected class I(t) get falls. Figures 5(d) illustrates how the infected class I(t)
rise for an increasing the rate of unprotected symptoms τ.

(a) Impact of the rate of innate dying ψ in Infected
I(t)

(b) The influence of the number of individuals who
pass away due to a disease δ in Infected I(t)

(c) The effects of the rate of infectious recovery θ in
Infected I(t)

(d) Variation of the unprotected symptom rate τ in
Infected I(t)

Figure 5
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For Recovered class. Figures 6(a)-6(d) shows that the Recovered class R(t) versus time (t)
(weeks) by using equations (39). The virtues of natural death ψ, the amount of people who
pass away due to illness δ, as well as how quickly individuals who have recovered lose their
transient immunity σ all increase, the corresponding Recovered class R(t) drops as shown
in Figures 6(a)-6(c). As illustrated in Figure 6(d), there is a positive correlation between the
increases in the infectious recovery rate θ and the recovered class R(t).

(a) The influence of the number of individuals who
pass away from disease δ in recovered R(t)

(b) Variation of the rate of innate dying ψ in
Recovered R(t)

(c) The impacts of the rate at which recovered
humans lose temporary immunity σ in
Recovered R(t)

(d) Impact of the rate of infectious recovery θ in
Recovered R(t)

Figure 6

6. Conclusion
The approximate analytical result of the Susceptible (S), Exposed (E), Infected (I), and
Recovered (R), of typhoid infection models were derived for all parameter values using the
Homotopy Analysis Method. The graphical depictions for all parameters involved in the model
are provided to show effectiveness of the method. The result leads to the following: The
agreement between the numerical simulation and our approximate analytical results was
found to be satisfactory.

• Reducing the amount that sick people interact with one another is one strategy to reduce
the number of susceptible people.

• We can lessen the number of persons who are susceptible to typhoid fever by boosting the
immunity of the recovered individual.
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• By avoiding the contact between the infected and uninfected individual, we can reduce
the exposed population.

• The infected population was reduced due to an increase in the recovered people.
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