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Abstract. In this study, a novel epidemic model for COVID 19 (information propagation model) which
explains the dissemination of information is examined. The model is related to the total number of
primary communicators, onlookers, secondary communicators, immunizers, as well as quitters at
network nodes. The approximate analytical results for the five compartments represented by primary
communicators, onlookers, secondary communicators, immunizers as well as quitters are obtained by
employing the Homotopy analysis approach. Our approximate analytical expressions are compared
with the numerical simulation (MATLAB) and are shown to be a very good fit with all parameter
values. The impacts of several parameters including initial transmission rate, propagation rates, exit
rate, network average degree along with quit probability are shown in the graphical representation.
With the help of this technique, the epidemic models SIR (Susceptible-Infected-Recovered), SVIR
(Susceptible-Vaccinated-Infected-Recovered), SEIR (Susceptible-Exposed-Infected-Recovered), SVEIR
(Susceptible-Vaccinated-Exposed-Infected-Recovered) of COVID 19, malaria, tuberculosis, and HIV
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1. Introduction
A mathematical modelling has developed by Lekone and Finkenstädt [9] as a crucial technique
for exploring the dynamics for the transmission of infectious disorders. The most often utilised
framework for theory divides the human host population into four categories: susceptible,
infected, exposed, infectious, and recovered. Such susceptible-exposed-infectious-recovered
(SEIR) representations where typically stated in order a set of differential equations, wherein
the rates of flow across compartments are governed by factors particular to the disease’s natural
history. Daghriri et al. [6] highlighted the development of specific epidemiological models,
evaluate models critically in regard to the amount and depth of modelling of media platforms,
social networking elements, sentiment analysis, and lastly, partially depict the analysis of
sentiment employing COVID-19 data collected from Twitter.

Coronavirus disease (COVID-19) is a contagious illness brought on by the SARSCoV-2 virus.
As explained by Rangasamy et al. [16], epidemic models are often utilised and useful for a
variety of applications. Numerous epidemic models are described in the literature, including
Susceptible, Infected, Recovered (SIR) as well as its Exposed variants (SEIR), vaccinated (SVIR),
SEIR-asymptomatic (SEIAR), SEIAR-vaccinated (SEVIAR), with deceased (SIRD), SVIR-
asymptomatic (SAVIR), cross-immunity component (SIRC), as well as with quarantine (SIRQ).
In the work of Chowdhury et al. [5], a numeric-analytic multistage homotopy-perturbation
approach has been used to model the whole time evolution in the prey and predator problem.
Additionally, numerical contrasts with the traditional homotopy perturbation technique and
the fourth-order Runge-Kutta (RK4) approach were compared numerically and shown. The
population is partitioned into four sections in the SEIR model, according to Al-Smadi and
Gumah [2], a susceptible compartment, designated S, in which everyone in the population are
more susceptible to infectious diseases; and an exposed compartment, designated E; an infected
compartment, designated I; and a removed compartment, designated R; and all human beings
have been cured of the disease. IMR along with ITR were examined together with a one-step
and two-step symmetrization with respect to active as well as passive modes in Bakar and
Razali [4] findings for the SEIR model utilising two symmetric Runge-Kutta methods. The
Runge-Kutta method along with the fourth order Euler approach was both used by Ashgi et
al. [3] for solving the SIR Model. The application of SIR and SEIR model are given by Ali and
Khan [1], Ebiwareme et al. [7], El-Hajji and Albargi [8], Narmatha et al. [14], Prodanov [15],
Renganathan et al. [17], Rustum and Al-Temimi [18], and Zarin et al. [19].

The primary goal of this study is to employ the Homotopy analysis technique to obtain
approximate analytical outcomes for the SIR model. At present, researchers handle these types
of problems while providing implicit solutions, besides our approximate results offers explicit
solutions. The approximate analytical findings and numerical simulation are subsequently
juxtapose and graphically displayed. In order to distinguish the influence of several parameters
like the propagation rates, the exit rate, the network average degree, the quit probability and
the initial transmission rate, the graphical representations are illustrated.

2. Mathematical Formulation of the Problem
2.1 Standard SIR Model
According to the SIR model, certain illnesses can be treated and also never infected yet again.
Individuals are classified into three phases in the SIR model: susceptible phase S, infected
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phase I, and immune phase R. Between them, the infected person will be treated, and soon
after getting cured, they will get immunity and will not again be infected, and also is unable to
distribute the virus to other people, thus they no longer takes part in the virus’s spread. The
SIR model’s transmission mechanism is as follows: Persons in the susceptible stated S who get
close into interaction with people who are in the infection state I may become infected, and
those in the infection state I may infect others while also being cured and recovered and then
transforming into an immune state R that will never again be infected and disseminate the
virus. The flow diagram for SIR model as shown in Figure 1a.

Compared to the SI and SIS models, the SIR-based model is far more accurate. Furthermore,
following the dissemination of knowledge via social media during a period of time, people are
likely to stop eventually stop disseminating it, which remains more consistent with the SIR
model’s characteristics. As a result, studying dissemination of information using the SIR model
is more applicable.

2.2 Principle Analysis of Information Dissemination Model
The SIR concept of infectious disorders discusses diseases that cannot be infected if the patient is
cured. Individuals within the models of SIR are classified into three states as follows: susceptible
S, infected I as well as immune R. According to the SIR model, variations in the quantities of
all of these three phases are associated with the λ infection rate, which indicates the risk of
getting infected whenever the susceptible node comes into contact with the infected phase I
node, µ represents the cure rate, which indicates the possibility that the infected condition I
node will be subsequently treated. However, in the case of information transmission, users will
pick their attitude with regard to information spontaneously based on their individual desires;
therefore this will not be static. Because it would be influenced by the surrounding environment
and people, the information dissemination model used in this study has been redesigned on the
basis of the SIR model as shown in Figure 1b.

S I R
λ µ

(a) Flow diagram for SIR model

Primary
Communicators (I)

Wait-and-seers (S1)

Secondary
Communicators (S2)

Immunizers (R1)

Quitters (R2)

λ2

λ1

β

γ

µ2µ1

(b) Flow diagram of redesigned SIR model

Figure 1
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2.3 An Information Dissemination Model
Here, N represents all of the network’s nodes, and I(t), S1(t), S2(t), R1(t), R2(t) stand for
the number of primary communicators, onlookers, secondary communicators, immunizers,
together with quitters in the network nodes during time t, and also the I(t)+S1(t)+S2(t)+
R1(t)+R2(t) = N holds. Using an information propagation model, construct the differential
equations as indicated below (Zhao and Yu [20]):

dI(t)
dt

=−λ1kI(t)S2(t)−λ2kI(t)S2(t), (1)

dS1(t)
dt

=λ2kI(t)S2(t)− (µ1 +µ2)kS1(t)S2(t)− [1− (µ1 +µ2)k]βS1(t), (2)

dS2(t)
dt

=λ1kI(t)S2(t)+ (µ1 +µ2)kS1(t)S2(t)−γS2(t), (3)

dR1(t)
dt

= [1− (µ1 +µ2)k]βS1(t), (4)

dR2(t)
dt

= γS2(t), (5)

where µ1 and µ2 stand for the propagation rates, β stands for the exit rate, k means the network
average degree, and γ indicates the quit probability. λ1, λ2 denotes the initial transmission
rate.

With initial conditions

At t = 0, I(0)= a > 0, S1(0)= b > 0, S2(0)= d > 0, R1(0)= f > 0, R2(0)= g > 0. (6)

3. Approximate Analytical Expression of the Non-Linear Initial Value
Problem Using the Homotopy Analysis Method in Information

Dissemination Model
The aforementioned first order differential equations are solved utilising the homotopy analysis
technique. It is a non-perturbative analytical technique for getting series solutions for equations
that are non-linear. The Homotopy analysis technique is an effective analytical technique for
non-linear problems, has been developed by Liao [10–13]. With HAM, we may control and
regulate the convergence of a solution by utilising the so-called convergence-control parameter,
which sets it apart from other perturbative and also non-perturbative analytical methods. Based
on this, HAM has become the most effective method for locating analytical results for the
function that is unknown along with its derivatives. Previous applications for HAM have mostly
concentrated upon non-linear differential equations whereas nonlinearity corresponds to a
polynomial, as demonstrated by Liao’s work [10,12,13].

The approximate analytical expressions of equations (1)-(5) as follows:

I(t)= a+
(

hA1 +hA2

A3

)
[1− e−A3t], (7)

S1(t)= be−B1t +
(

hB3e−B1t

B1 +B2

)
[e(B1+B2)t −1]+

(
hB4e−B1t

B2

)
[eB2t −1], (8)

S2(t)= de−D1t +hD2te−D1t +
(

hD3

D4

)
e−D1t[eD4t −1], (9)
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where

R1(t)= f +b(e−F1t −1), (10)

R2(t)= g+h(eB2t −1), (11)

where
A1 =λ1kad, A2 =λ2kad, B1 = [1− (µ1 +µ2)k]β, B2 =−γ,B3 =−λ2kad,

B4 = (µ1 +µ2)kbd, D1 = γ, D2 =−λ1kad, D3 =−(µ1 +µ2)kbd,

D4 =−[1− (µ1 +µ2)k]β, F1 = [1− (µ1 +µ2)k]β.

 (12)

4. Numerical Simulation
Moreover, the function maingraph through MATLAB programme is utilized to solve numerically
the given non-linear differential equations (1) to (6). A comparison is made between the
numerical simulation and the approximate analytical results. Appendix B has the MATLAB

programme. Figure 1c to Figure 6 shows the numerical simulation carried out using MATLAB ,
together with the approximate analytical expressions that were obtained. An excellent fit is
observed.

5. Results and Discussions
Appendix A provides an explanation of the solutions that have been obtained through the use of
HAM. Figure 1c depicts the influence of five compartments such as prime communicators I(t),
onlookers S1(t), secondary communicators S2(t), immunizers R1(t), and quitters R2(t) by fixing
the appropriate values of all variable.

(c) Influence of all parameters in primary communicators I(t), onlookers S1(t), secondary communicators S2(t),
immunizers R1(t), quitters R2(t)

Figure 1

For Primary communicators: Figure 2 shows that the primary communicators I(t) with
number of days t by utilizing equation (7). Figures 2a and 2c shows that primary communicators
I(t) get drops by raising the amounts of transmission rate λ1 and network average degree k. As
seen in Figure 2b, it depicts that primary communicators I(t) get raises by raising the amounts
of quit probability γ.
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(a) Effects of transmission rate λ1 in primary
communicators I(t)

(b) Impact of quit probability γ for primary
communicators I(t)

(c) Variation of network average degree k on
primary communicators I(t)

Figure 2

For Onlookers: Figure 3 displays that the onlookersS1(t) against the number of days t by
employing equation (8). Figures 3a-3c demonstrate how raising the propagation rates µ1, µ2,
exit rate βand quit probability γ reduces the number of onlookers S1(t). As the network average
degree k rises, so does the onlookers S1(t), as illustrated in Figure 3d.

For Secondary Communicators: Figure 4 exhibits that the secondary communicators S2(t)
versus number of days t by using equation (9). Figures 4a and 4b demonstrate when increasing
the amounts of quit probability γ and exit rate β results a drop in the secondary communicators
S2(t). Figures 4c and 4d depicts that when raising the values of propagation µ1, µ2 and
transmission rates λ1 results in the secondary communicators to grows.

For Immunizers: Figure 5 demonstrates that the immunizers R1(t) with number of days t by
utilizing equation (10). Figures 5a and 5b indicates that immunizers increase when propagation
rates µ1, µ2 and exit rate β rise.
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(a) Influence of propagation rates µ1, µ2, for
onlookers S1(t)

(b) Effect of exit rate β for onlookers S1(t)

(c) Impact of quit probability γ in onlookers S1(t) (d) Variation of network average degree k for
onlookers S1(t)

Figure 3

(a) Influence of quit probability γ for secondary
communicators S2(t)

(b) Effect of exit rate β for communicators S2(t)

(Figure Contd.)
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(c) Impact of propagation rates µ1, µ2, for
secondary communicators S2(t)

(d) Variation for transmission rate λ1 in secondary
communicators S2(t)

Figure 4

(a) Influence of propagation rates µ1, µ2, on
immunizers R1(t)

(b) Effect of exit rate β on immunizers R1(t)

(c) Impact for network average degree k in
immunizers R1(t)

Figure 5
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For Quitters: Figure 6 displays that the quitters R2(t) with number of days t by using equation
(11). Figure 6 illustrates that when quit probability γ grows, so does the quitters R2(t).

Figure 6. Variation of quit probability γ on quitters R2(t)

6. Conclusion
The approximate analytical solutions for the immunizers, quitters, onlookers, secondary
communicators, and primary communicators in the network nodes at time t were presented
in this study. The approximate analytical solutions were obtained with the help of the
Homotopy analysis technique. The outcomes were matched with the numerical results exactly
for small values of the parameters. By changing the values of the initial transmission rate,
propagation rate, exit rate, network average degree, and quit probability, the graphs were
able to demonstrate the effects of various parameters. The approximate analytical outcomes
enable researchers to know more about the model and determine how various factors affect the
populations.

The following are observed in the above results:

• As the quit probability γ grows, so does the number of immunizers R1(t) as well as the
number of quitters R2(t).

• The number of secondary communicators S2(t) rises as the original transmission rates λ1
grows.

• As the exit rate β rises, so does the number of immunizers R1(t).

Appendix A. Approximate Analytical Solution of the Equations (1)-(6)
By Employing the Homotopy Analysis Technique

In this appendix, approximate analytical solution of equations (1)-(5) by using the initial
condition (6) has been derived briefly.

In order to construct the homotopy for equations (1)-(5), we do the following:

(1− p)
[

dI
dt

]
= hp

[
dI
dt

+λ1kIS2 +λ2kIS2

]
, (A.1)

(1− p)
[

dS1

dt
+ [1− (µ1 +µ2)k]βS1

]
= hp

[
dS1

dt
−λ2kIS2 + (µ1 +µ2)kS1S2 + [1− (µ1 +µ2)k]βS1

]
,

(A.2)
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(1− p)
[

dS2

dt
+γS2

]
= hp

[
dS2

dt
−λ1kIS2 − (µ1 +µ2)kS1S2 +γS2

]
, (A.3)

(1− p)
[

dR1

dt

]
= hp

[
dR1

dt
− [1− (µ1 +µ2)k]βS1

]
, (A.4)

(1− p)
[

dR2

dt

]
= hp

[
dR2

dt
−γS2

]
. (A.5)

Let the initial approximation solutions of the equations (A.1)-(A.5) as follows:

I = I0 + pI1 + p2I2 + . . . , (A.6)

S1 = S10 + pS11 + p2S12 + . . . , (A.7)

S2 = S20 + pS21 + p2S22 + . . . , (A.8)

R1 = R10 + pR11 + p2R12 + . . . , (A.9)

R2 = R20 + pR21 + p2R22 + . . . . (A.10)

Consequently, the initial conditions are
I0(0)= a > 0, S10(0)= b > 0, S20(0)= d > 0, R10(0)= f > 0, R20(0)= g > 0,

I i(0)= 0, S1i (0)= 0, S2i (0)= 0, R1i (0)= 0, R2i (0)= 0, i = 1,2,3 . . . .

}
. (A.11)

Equating the coefficients of p0 after substituting equations (A.6)-(A.10) in equations (A.1)-(A.5)
yields the following:

dI0

dt
= 0, (A.12)

dS10

dt
+ [1− (µ1 +µ2)k]βS10 = 0, (A.13)

dS20

dt
+γS20 = 0, (A.14)

dR10

dt
= 0, (A.15)

dR20

dt
= 0. (A.16)

Now, by solving the equations (A.12)-(A.16) utilising the initial conditions from equation (A.11),
we obtain

I0 = a, (A.17)

S10 = be−[1−(µ1+µ2)k]βt, (A.18)

S20 = de−γt, (A.19)

R10 = f , (A.20)

R20 = g. (A.21)

After equating p1 coefficients, we have
dI1

dt
− dI0

dt
= h

[
dI0

dt
+λ1kI0S20 +λ2kI0S20

]
, (A.22)
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dS11

dt
+ [1− (µ1 +µ2)k]βS11 −

(
dI0

dt
+ [1− (µ1 +µ2)k]βS11

)
= h

[
dI0

dt
+ [1− (µ1 +µ2)k]βS11 −λ2kI0S20 + (µ1 +µ2)kS10 S20

]
, (A.23)

dS21

dt
+γS21 −

(
dS20

dt
+γS20

)
= h

[
dS20

dt
+γS20 −λ1kI0S20 − (µ1 +µ2)kS10 S20

]
, (A.24)

dR11

dt
− dR10

dt
= h

[
dR10

dt
− [1− (µ1 +µ2)k]βS10

]
, (A.25)

dR21

dt
− dR20

dt
= h

[
dR20

dt
−γS20

]
. (A.26)

Equations (A.22)-(A.26) can be solved by employing the initial conditions found in equation
(A.11), we attain

I1 =
(

hkad(λ1 +λ2)
γ

)
[1− e−γt], (A.27)

S11 =
(

h(−λ2kad)e−[1−(µ1+µ2)k]βt

[1− (µ1 +µ2)k]β−γ

)
[e([1−(µ1+µ2)k]β−γ)t −1]

+
(

h(µ1 +µ2)kbde−[1−(µ1+µ2)k]βt

−γ
)
[e−γt −1], (A.28)

S21 = h(−λ1kad)te−γt +
(

h(−(µ1 +µ2)kbd)
−[1− (µ1 +µ2)k]β

)
e−γt[e−[1−(µ1+µ2)k]βt −1], (A.29)

R11 = hb(e−[1−(µ1+µ2)k]βt −1), (A.30)

R21 = h(e−γt −1). (A.31)

Equations (A.17) and (A.27) are added, we yield

I = I0 + I1 = a+
(

hkad(λ1 +λ2)
γ

)
[1− e−γt]. (A.32)

The result of adding equations (A.18) and (A.28) is

S1 = S10 +S11 = be−[1−(µ1+µ2)k]βt

+
(

h(−λ2kad)e−[1−(µ1+µ2)k]βt

([1− (µ1 +µ2)k]β−γ)

)
[e([1−(µ1+µ2)k]β−γ)t −1]

+
(

h(µ1 +µ2)kbde−[1−(µ1+µ2)k]βt

−γ
)
[e−γt −1]. (A.33)

Equations (A.19) and (A.29) are added to yield

S2 = S20 +S21 = de−γt +h(−λ1kad)te−γt

+
(

h(−(µ1 +µ2)kbd)
−[1− (µ1 +µ2)k]β

)
e−γt[e−[1−(µ1+µ2)k]βt −1]. (A.34)

Equations (A.20) and (A.30) are added, getting:

R1 = R10 +R11 = f +hb(e−[1−(µ1+µ2)k]βt −1). (A.35)

Equations (A.21) and (A.31) added together obtain

R2 = R20 +R21 = g+h(e−γt −1). (A.36)
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Hence the approximate analytical results for five compartments were attained in equations
(A.32)-(A.36).

Appendix B. MATLAB Programming for Equations (1)-(6)
function maingraph
options=odeset('RelTol',1e-6,'Stats','on');
\%initial conditions
Xo=[500,170,320, 80,5];
tspan=[0 30];ss
tic
[t,X]=ode45(@TestFunction,tspan,Xo,options);
toc
figure
hold on
plot(t,X(:,1),'-')
plot(t,X(:,2),'-')
plot(t,X(:,3),'-')
plot(t,X(:,4),'-')
plot(t,X(:,5),'-')
legend('Susceptible','Exposed','Infected','Recovered','I')
ylabel('Population')
xlabel('Time')
return
function[dx_dt]=TestFunction(~,x)
k=0.01;lambda1=0.2;meu1=0.125;meu2=0.125;lambda2=0.8;beta=0.15;gamma=0.3;
dx_dt(1)=-lambda1*k*x(1)*x(3)-lambda2*k*x(1)*x(3);
dx_dt(2)=lambda2*k*x(1)*x(3)-(meu1+meu2)*k*x(2)*x(3)-(1-(meu1+meu2)*k)*beta*x(2);
dx_dt(3)=lambda1*k*x(1)*x(3)+(meu1+meu2)*k*x(2)*x(3)-gamma*x(3);
dx_dt(4)=(1-(meu1+meu2)*k)*beta*x(2);
dx_dt(5)=gamma*x(3);
dx_dt = dx_dt';
return

Appendix C. Nomenclature

Symbols Meaning
N Total number of nodes
I Number of primary communicators
S1 Number of onlookers
S2 Number of secondary communicators
R1 Number of immunizers
R2 Number of quitters
t Time
λ1, λ2 Initial transmission rate
µ1, µ2 Propagation rates
β Exit rate
k Network average degree
γ Quit probability
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